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Abstract

We present a compared analysis of some properties of 3-Sasakian and 3-cosymplectic manifolds. We construct a canonical
connection on an almost 3-contact metric manifold which generalises the Tanaka–Webster connection of a contact metric manifold
and we use this connection to show that a 3-Sasakian manifold does not admit any Darboux-like coordinate system. Moreover, we
prove that any 3-cosymplectic manifold is Ricci-flat and admits a Darboux coordinate system if and only if it is flat.
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1. Introduction

Both 3-Sasakian and 3-cosymplectic manifolds belong to the class of almost contact (metric) 3-structures,
introduced by Kuo [13] and, independently, by Udriste [17]. The study of 3-Sasakian manifolds has been conducted
by several authors (see for example [5,6] and references therein) due to the increasing awareness of their importance in
mathematics and in physics, together with the closely linked hyper-Kählerian and quaternionic Kählerian manifolds.
Recently they have made an appearance also in supergravity and M-theory (see [1,2,8]). Less studied, so far, are the
3-cosymplectic manifolds, also called hyper-cosymplectic, but we can list some recent publications [7,12,14,16]. For
example, Kashiwada and his collaborators proved in [12] that any b-Kenmotsu (see [4,10]) almost contact 3-structure
must be 3-cosymplectic.

In this paper we present a compared analysis of some properties of 3-Sasakian and 3-cosymplectic manifolds. We
start with a brief review of some known results on these classes of manifolds, contained in Section 2. In Section 3
we construct a canonical connection on an almost 3-contact metric manifold and we study its curvature and torsion
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analysing also its behaviour in the special cases of 3-Sasakian and 3-cosymplectic manifolds. Our connection can
be interpreted as a generalisation of the (generalised) Tanaka–Webster connection of a contact metric manifold,
introduced by Tanno in [15]. The section is concluded by a further investigation of the properties of 3-cosymplectic
manifolds concerning their projectability which leads us to prove that every 3-cosymplectic manifold is Ricci-
flat. In the final section we analyse the possibility of finding a Darboux-like coordinate system on 3-Sasakian and
3-cosymplectic manifolds. Firstly we establish a relation which holds in any almost 3-contact metric manifold linking
the horizontal part of the metric with the three fundamental forms Φα . This relation is responsible for a kind of rigidity
of this class of manifolds which links the existence of Darboux coordinates to the flatness of the manifold and does
not hold in the case of a single Sasakian or cosymplectic structure. In particular, on the one hand, using our canonical
connection and the (local) projection of a 3-Sasakian manifold over a quaternionic Kählerian manifold (see [5,9]), we
show that 3-Sasakian manifolds, unlike the Sasakian ones, do not admit any Darboux-like coordinate system. This
result is related to the fact that 3-Sasakian manifolds are not (horizontally) flat. On the other hand, we show that a
3-cosymplectic manifold admits a Darboux coordinate system in the neighbourhood of each point if and only if its
metric is flat.

2. Preliminaries

An almost contact manifold is an odd-dimensional manifold M which carries a field φ of endomorphisms of the
tangent spaces, a vector field ξ , called characteristic or Reeb vector field, and a 1-form η satisfying φ2

= −I + η ⊗ ξ

and η(ξ) = 1, where I : T M → T M is the identity mapping. From the definition it follows also that φξ = 0, η◦φ = 0
and that the (1, 1)-tensor field φ has constant rank 2n (cf. [4]). An almost contact manifold (M, φ, ξ, η) is said to be
normal when the tensor field N = [φ, φ] + 2dη ⊗ ξ vanishes identically, [φ, φ] denoting the Nijenhuis tensor of φ.
It is known that any almost contact manifold (M, φ, ξ, η) admits a Riemannian metric g such that

g(φE, φF) = g(E, F) − η(E)η(F) (1)

holds for all E, F ∈ Γ (T M). This metric g is called a compatible metric and the manifold M together with the
structure (φ, ξ, η, g) is called an almost contact metric manifold. As an immediate consequence of (1), one has
η = g(·, ξ). The 2-form Φ on M defined by Φ(E, F) = g(E, φF) is called the fundamental 2-form of the
almost contact metric manifold M . Almost contact metric manifolds such that both η and Φ are closed are called
almost cosymplectic manifolds and almost contact metric manifolds such that dη = Φ are called contact metric
manifolds. Finally, a normal almost cosymplectic manifold is called a cosymplectic manifold and a normal contact
metric manifold is said to be a Sasakian manifold. In terms of the covariant derivative of φ the cosymplectic and the
Sasakian conditions can be expressed respectively by

∇φ = 0

and

(∇Eφ)F = g(E, F)ξ − η(F)E

for all E, F ∈ Γ (T M). It should be noted that both in Sasakian and in cosymplectic manifolds ξ is a Killing vector
field.

An almost 3-contact manifold is a (4n + 3)-dimensional smooth manifold M endowed with three almost contact
structures (φ1, ξ1, η1), (φ2, ξ2, η2), (φ3, ξ3, η3) satisfying the following relations, for every α, β ∈ {1, 2, 3},

φαφβ − ηβ ⊗ ξα =

3∑
γ=1

εαβγ φγ − δαβ I, φαξβ =

3∑
γ=1

εαβγ ξγ , ηα ◦ φβ =

3∑
γ=1

εαβγ ηγ , (2)

where εαβγ is the totally antisymmetric symbol. This notion was introduced by Kuo [13] and, independently, by
Udriste [17]. In [13] Kuo proved that given an almost contact 3-structure (φα, ξα, ηα), there exists a Riemannian
metric g compatible with each of them and hence we can speak of almost contact metric 3-structures. It is well-
known that in any almost 3-contact metric manifold the Reeb vector fields ξ1, ξ2, ξ3 are orthonormal with respect to
the compatible metric g and that the structural group of the tangent bundle is reducible to Sp(n) × I3. Moreover,
by putting H =

⋂3
α=1 ker(ηα) one obtains a 4n-dimensional distribution on M and the tangent bundle splits as the
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orthogonal sum T M = H ⊕ 〈ξ1, ξ2, ξ3〉. For a reason which will be clearer later we call any vector belonging to the
distribution H “horizontal” and any vector belonging to the distribution 〈ξ1, ξ2, ξ3〉 “vertical”. An almost 3-contact
manifold M is said to be hyper-normal if each almost contact structure (φα, ξα, ηα) is normal.

When the three structures (φα, ξα, ηα, g) are contact metric structures, we say that M is a 3-contact metric manifold
and when they are Sasakian, that is when each structure (φα, ξα, ηα) is also normal, we call M a 3-Sasakian manifold.
However these two notions coincide. Indeed as it has been proved in 2001 by Kashiwada [11], every contact metric
3-structure is 3-Sasakian. In any 3-Sasakian manifold we have that, for each α ∈ {1, 2, 3},

φα = −∇ξα. (3)

Using this, one obtains that [ξ1, ξ2] = 2ξ3, [ξ2, ξ3] = 2ξ1, [ξ3, ξ1] = 2ξ2. In particular, the vertical distribution
〈ξ1, ξ2, ξ3〉 is integrable and defines a 3-dimensional foliation of M denoted by F3. Since ξ1, ξ2, ξ3 are Killing vector
fields, F3 is a Riemannian foliation. Moreover it has totally geodesic leaves of constant curvature 1. On the contrary,
in a 3-Sasakian manifold the horizontal distribution H is never integrable. About the foliation F3, Ishihara [9] has
shown that if F3 is regular then the space of leaves is a quaternionic Kählerian manifold. Boyer, Galicki and Mann
have proved the following more general result.

Theorem 2.1 ([5]). Let (M4n+3, φα, ξα, ηα, g) be a 3-Sasakian manifold such that the Killing vector fields ξ1, ξ2, ξ3
are complete. Then

(i) M4n+3 is an Einstein manifold of positive scalar curvature equal to 2(2n + 1)(4n + 3).
(ii) Each leaf L of the foliation F3 is a 3-dimensional homogeneous spherical space form.

(iii) The space of leaves M4n+3/F is a quaternionic Kählerian orbifold of dimension 4n with positive scalar curvature
equal to 16n(n + 2).

By an almost 3-cosymplectic manifold we mean an almost 3-contact metric manifold M such that each almost
contact metric structure (φα, ξα, ηα, g) is almost cosymplectic. The almost 3-cosymplectic structure (φα, ξα, ηα, g)

is called 3-cosymplectic if it is hyper-normal. In this case M is said to be a 3-cosymplectic manifold. However it has
been proved recently that these two notions are the same:

Theorem 2.2 ([7, Theorem 4.13]). Any almost 3-cosymplectic manifold is 3-cosymplectic.

In any 3-cosymplectic manifold we have that ξα , ηα , φα and Φα are ∇-parallel. In particular

[ξα, ξβ ] = ∇ξαξβ − ∇ξβ ξα = 0 (4)

for all α, β ∈ {1, 2, 3}, so that, as in any 3-Sasakian manifold, 〈ξ1, ξ2, ξ3〉 defines a 3-dimensional foliation F3 of
M4n+3. However, unlike the case of 3-Sasakian geometry, the horizontal subbundle H of a 3-cosymplectic manifold
is integrable because, for all X, Y ∈ Γ (H), ηα([X, Y ]) = −2dηα(X, Y ) = 0 since dηα = 0.

3. Further properties of 3-Sasakian and 3-cosymplectic manifolds

In this section we investigate on further properties of 3-Sasakian and 3-cosymplectic manifolds. We start with the
following preliminary result.

Lemma 3.1. Let (M, φα, ξα, ηα, g) be an almost 3-contact metric manifold. Then if M is 3-Sasakian we have, for
each α, β ∈ {1, 2, 3},

Lξαφβ = 2
3∑

γ=1

εαβγ φγ , (5)

and if M is 3-cosymplectic,

Lξαφβ = 0. (6)
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Proof. For any X ∈ Γ (H) we have, using (3),

(Lξ2φ1)X = ∇ξ2(φ1 X) − ∇φ1 Xξ2 − φ1∇ξ2 X + φ1∇Xξ2

= (∇ξ2φ1)X + φ2φ1 X − φ1φ2 X = −2φ3 X.

Moreover, we have

(Lξ2φ1)ξ1 = [ξ2, φ1ξ1] − φ1[ξ2, ξ1] = 2φ1ξ3 = −2ξ3 = −2φ3ξ1,

(Lξ2φ1)ξ2 = [ξ2, φ1ξ2] − φ1[ξ2, ξ2] = [ξ2, ξ3] = 2ξ1 = −2φ3ξ2,

(Lξ2φ1)ξ3 = [ξ2, φ1ξ3] − φ1[ξ2, ξ3] = −[ξ2, ξ2] − 2φ1ξ1 = 0 = −2φ3ξ3,

from which we conclude that Lξ2φ1 = −2φ3. Similarly one can prove Lξ3φ1 = 2φ2. Finally, Lξ1φ1 = 0 holds because
(φ1, ξ1, η1, g) is a Sasakian structure. The other equalities in (5) can be proved in an analogous way. We now prove
(6). For any horizontal vector field X we have

(Lξαφβ)X = ∇ξα (φβ X) − ∇φβ Xξα − φβ(∇ξα X − ∇Xξα) = (∇ξαφβ)X = 0

and, by using (2) and (4), (Lξαφβ)ξγ = [ξα, φβξγ ] − φβ [ξα, ξγ ] = 0. �

A common property of 3-Sasakian and 3-cosymplectic manifolds is stated in the following lemma.

Lemma 3.2. Let M be a 3-Sasakian or 3-cosymplectic manifold. Then, for any horizontal vector field X, [X, ξα] is
still horizontal.

Proof. ηβ([X, ξα]) = +X (ηβ(ξα)) − ξα(ηβ(X)) − 2dηβ(X, ξα) = −2dηβ(X, ξα), for any β ∈ {1, 2, 3}. Now, if the
structure is 3-cosymplectic dηβ = 0 and if it is 3-Sasakian dηβ(X, ξα) = g(X, φβξα) =

∑3
γ=1 εαβγ ηγ (X) = 0 since

X is horizontal. �

Now we attach a canonical connection to any manifold M4n+3 with an almost contact metric 3-structure
(φα, ξα, ηα, g) in the following way. We set

∇̃X Y = (∇X Y )h, ∇̃ξα Y = [ξα, Y ], ∇̃ξα = 0, (7)

for all X, Y ∈ Γ (H), where (∇X Y )h denotes the horizontal component of the Levi-Civita connection. In the following
proposition we start the study of the properties of this connection.

Proposition 3.3. Let (M4n+3, φα, ξα, ηα, g) be an almost 3-contact metric manifold. Then the 1-forms η1, η2, η3 are
∇̃-parallel if and only if dηα(X, ξβ) = 0 for any X ∈ Γ (H) and any α, β ∈ {1, 2, 3}. Furthermore ∇̃ is a metric
connection with respect to g if and only if each ξα is Killing.

Proof. Since ∇̃X Y ∈ Γ (H) for any X, Y ∈ Γ (H), we have (∇̃Xηα)Y = 0 for all X, Y ∈ Γ (H); moreover, from
∇̃ξβ = 0 and ηα(ξβ) = δαβ it follows also that (∇̃Eηα)ξβ = 0, for all E ∈ Γ (T M) and α, β ∈ {1, 2, 3}.
So ηα is ∇̃-parallel if and only if (∇̃ξβ ηα)X = 0 for all β ∈ {1, 2, 3}, i.e. if and only if ηα([ξβ , X ]) = 0 and
this is equivalent to requiring that dηα(X, ξβ) = 0. Now we prove the second part of the proposition. Firstly,
we note that (Lξα g)(ξβ , ξγ ) = −g([ξα, ξβ ], ξγ ) − g(ξβ , [ξα, ξγ ]) = −2

∑3
δ=1(εαβδg(ξδ, ξγ ) + εαγ δg(ξβ , ξδ)) =

−2(εαβγ + εαγβ) = 0, and, by Lemma 3.2, (Lξα g)(X, ξβ) = ξα(g(X, ξβ)) − g([ξα, X ], ξβ) − g(X, 2εαβγ ξγ ) = 0 for
X ∈ Γ (H). Next, we observe that for all horizontal vector fields X , Y , Z , we have

(∇̃Z g)(X, Y ) = Z(g(X, Y )) − g((∇Z X)h, Y ) − g(X, (∇Z Y )h)

= Z(g(X, Y )) − g(∇Z X, Y ) − g(X, ∇Z Y ) = 0.

Moreover, clearly, (∇̃Z g)(X, ξα) = 0. Finally, (∇̃E g)(ξα, ξβ) = 0 for any E ∈ Γ (T M) and any α, β ∈ {1, 2, 3}. So
g is ∇̃-parallel if and only if (∇̃ξα g)(X, Y ) = 0 for any X, Y ∈ Γ (H) and for all α ∈ {1, 2, 3}. But, as ∇̃ξα = 0, we
have the equality

(∇̃ξα g)(X, Y ) = ξα(g(X, Y )) − g([ξα, X ], Y ) − g(X, [ξα, Y ]) = (Lξα g)(X, Y )

from which we get the assertion. �
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In general the canonical connection ∇̃ is not torsion free. Indeed we have the following result.

Proposition 3.4. Let (M, φα, ξα, ηα, g) be an almost 3-contact metric manifold. Then the torsion tensor field T̃ of ∇̃

is given by

T̃ (X, Y ) = 2
3∑

α=1

dηα(X, Y )ξα, T̃ (X, ξα) = 0, T̃ (ξα, ξβ) = [ξβ , ξα],

for all X, Y ∈ Γ (H) and for all α ∈ {1, 2, 3}.

Proof. For any horizontal vector fields X , Y we have

T̃ (X, Y ) = (∇X Y − ∇Y X − [X, Y ])h
− [X, Y ]

v

= (T (X, Y ))h
−

3∑
α=1

g([X, Y ], ξα)ξα

= 2
3∑

α=1

dηα(X, Y )ξα.

Moreover, it follows from (7) that T̃ (ξα, X) = [ξα, X ] − [ξα, X ] = 0. Finally, for all α, β ∈ {1, 2, 3}, we have easily
T̃ (ξα, ξβ) = −[ξα, ξβ ] = [ξβ , ξα]. �

Corollary 3.5. Let (M, φα, ξα, ηα, g) be an almost 3-contact metric manifold such that the 1-forms η1, η2, η3 are ∇̃-
parallel. Then, the distribution spanned by ξ1, ξ2 and ξ3 is integrable if and only if T̃ (E, F) = 2

∑3
α=1 dηα(E, F)ξα

for all E, F ∈ Γ (T M).

Proof. From the equality [ξβ , ξα]
v

=
∑3

γ=1 ηγ ([ξβ , ξα])ξγ it follows that if the distribution spanned by ξ1, ξ2 and ξ3

is integrable, then T̃ (ξα, ξβ) =
∑3

γ=1 ηγ ([ξβ , ξα])ξγ = 2
∑3

γ=1 dηγ (ξα, ξβ)ξγ . The converse is trivial. �

Actually, the requirement that the Reeb vector fields are parallel, together with Propositions 3.3 and 3.4 uniquely
characterise the connection ∇̃. This is shown in the following theorem.

Theorem 3.6. Let (M, φα, ξα, ηα, g) be an almost 3-contact metric manifold. Then there exists a unique connection
∇̃ on M satisfying the following properties:

(i) ∇̃ξ1 = ∇̃ξ2 = ∇̃ξ3 = 0,
(ii) (∇̃Z g)(X, Y ) = 0, for all X, Y, Z ∈ Γ (H),

(iii) T̃ (X, Y ) = 2
∑3

α=1 dηα(X, Y )ξα and T̃ (X, ξα) = 0, for all X, Y ∈ Γ (H).

Furthermore, if M is 3-Sasakian, then for all E, F ∈ Γ (T M)

(∇̃Eφα)F = −

3∑
β,γ=1

εαβγ (ηβ(E)φγ Fh
− ηγ (E)φβ Fh); (8)

if M is 3-cosymplectic, then the connection ∇̃ coincides with the Levi-Civita connection and in particular we have,
for each α ∈ {1, 2, 3}, ∇̃φα = 0.

Proof. The connection defined by (7) satisfies the properties (i)–(iii). Thus we have only to prove the uniqueness of
such a connection. Let ∇̂ be any connection on M verifying the properties (i)–(iii). From (i) we get ∇̂ξα = 0 = ∇̃ξα ,
and, from (iii), 0 = T̂ (ξα, X) = ∇̂ξα X − ∇̂Xξα − [ξα, X ] = ∇̂ξα X − [ξα, X ], which implies that ∇̂ξα X = [ξα, X ] =

∇̃ξα X for all X ∈ Γ (H). Thus we have only to verify that ∇̂X Y = ∇̃X Y for all X, Y ∈ Γ (H), that is ∇̂X Y = (∇X Y )h

for all X, Y ∈ Γ (H). In order to check this equality, we define another connection on M , by setting

∇̄E F :=


∇̂E F + (∇E F)v, for E, F ∈ Γ (H);

∇E F, for E ∈ Γ (H⊥) and F ∈ Γ (T M);

∇E F, for E ∈ Γ (T M) and F ∈ Γ (H⊥),
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where (∇E F)v denotes the vertical component of the Levi-Civita covariant derivative. If we prove that ∇̄ coincides
with the Levi-Civita connection, then we will conclude that for all X, Y ∈ Γ (H) ∇X Y = ∇̄X Y = ∇̂X Y + (∇X Y )v ,
from which ∇̂X Y = (∇X Y )h . Firstly, note that for all X, Y ∈ Γ (H), using the definition of the Levi-Civita connection
∇ we have

∇̄X Y = ∇̂X Y +

3∑
α=1

g(∇X Y, ξα)ξα

= ∇̂X Y −
1
2

3∑
α=1

(ξα(g(X, Y )) − g([ξα, X ], Y ) − g([ξα, Y ], X) − g([X, Y ], ξα))ξα

= ∇̂X Y +
1
2

3∑
α=1

(−(Lξα g)(X, Y ) + ηα([X, Y ]))ξα

= ∇̂X Y −

3∑
α=1

(
1
2
(Lξα g)(X, Y ) + dηα(X, Y )

)
ξα.

Now we prove that the connection ∇̄ is metric and torsion free. For all X, Y, Y ′
∈ Γ (H)

(∇̄X g)(Y, Y ′) = X (g(Y, Y ′)) − g(∇̂X Y, Y ′) − g(Y, ∇̂X Y ′) = (∇̂X g)(Y, Y ′) = 0

by the preceding equality and the condition (ii). Next, by using (iii), we obtain T̄ (X, Y ) = T̂ (X, Y ) −

2
∑3

α=1 dηα(X, Y )ξα = 0. Thus ∇̄ coincides with the Levi-Civita connection of M and this implies that ∇̂ = ∇̃.
Now we prove the second part of the theorem. Assume that M is 3-Sasakian. Then for any X, Y ∈ Γ (H), using (3)

and the fact that ∇g = 0 we have

(∇̃Xφ1)Y = (∇Xφ1)Y −

3∑
α=1

g(∇X (φ1Y ), ξα)ξα + φ1

(
3∑

α=1

g(∇X Y, ξα)ξα

)

= g(X, Y )ξ1 − η1(Y )X +

3∑
α=1

g(φ1Y, ∇Xξα)ξα + g(∇X Y, ξ2)ξ3 − g(∇X Y, ξ3)ξ2

= −g(φ1Y, φ2 X)ξ2 − g(φ1Y, φ3 X)ξ3 + g(Y, φ2 X)ξ3 − g(Y, φ3 X)ξ2

= g(Y, φ1φ2 X)ξ2 + g(Y, φ1φ3 X)ξ3 + g(Y, φ2 X)ξ3 − g(Y, φ3 X)ξ2 = 0.

Moreover, for any α, β, γ ∈ {1, 2, 3}, (∇̃Eφβ)ξγ = ∇̃E (φβξγ ) − φβ∇̃Eξγ =
∑3

α=1 εαβγ ∇̃Eξα = 0. Finally, for any
X ∈ Γ (H)

(∇̃ξ1φ1)X = ∇̃ξ1(φ1 X) − φ1∇̃ξ1 X = [ξ1, φ1 X ] − φ1[ξ1, X ] = (Lξ1φ1)X,

so (∇̃ξ1φ1)X = (Lξ1φ1)X . Similarly, one can find (∇̃ξ2φ1)X = (Lξ2φ1)X and (∇̃ξ3φ1)X = (Lξ3φ1)X . Hence,
by applying (5), we have (∇̃ξ1φ1)X = 0, (∇̃ξ2φ1)X = −2φ3 X , (∇̃ξ3φ1)X = 2φ2 X . Thus, if we decompose
any pair of vector fields E, F ∈ Γ (T M) in their horizontal and vertical parts, E = Eh

+
∑3

α=1 ηα(E)ξα and
F = Fh

+
∑3

α=1 ηα(F)ξα , we have

(∇̃Eφ1)F =

3∑
α=1

(∇̃ηα(E)ξα
φ1)Fh

= η2(E)(∇̃ξ2φ1)Fh
+ η3(E)(∇̃ξ3φ1)Fh

= −2η2(E)φ3 Fh
+ 2η3(E)φ2 Fh .

The other equations involving φ2 and φ3 can be proved in a similar way.
Finally, let M be 3-cosymplectic. Then ∇X Y is horizontal for every X, Y ∈ Γ (H), since g(∇X Y, ξα) =

−g(Y, ∇Xξα) = 0 for all α ∈ {1, 2, 3}. Hence, ∇X Y = (∇X Y )h
= ∇̃X Y . Moreover, ∇ξα = 0 = ∇̃ξα . Finally,

∇ξα X = ∇Xξα − [X, ξα] = [ξα, X ] = ∇̃ξα X . We conclude that ∇ = ∇̃. �

In the next proposition we analyse the curvature of the canonical connection ∇̃ in a 3-Sasakian manifold.
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Proposition 3.7. Let (M4n+3, φα, ξα, ηα, g) be a 3-Sasakian manifold. Then the curvature tensor of ∇̃ verifies
R̃E Fξα = 0, R̃ξαξβ = 0 and R̃Xξα = 0 for all E, F ∈ Γ (T M), X ∈ Γ (H) and α, β ∈ {1, 2, 3}. Moreover, for
all X, Y, Z ∈ Γ (H),

R̃XY Z = (RXY Z)h
+

3∑
α=1

(dηα(Y, Z)φα X − dηα(X, Z)φαY ). (9)

Proof. That R̃E Fξα = 0 is obvious since ∇̃ξα = 0. Next, for any α, β ∈ {1, 2, 3},

R̃ξαξβ E = ∇̃ξα [ξβ , E] − ∇̃ξβ [ξα, E] − ∇̃
2

3∑
γ=1

εαβγ ξγ

E

= [ξα, [ξβ , E]] − [ξβ , [ξα, E]] − 2
3∑

γ=1

εαβγ [ξγ , E]

= [[ξα, E], ξβ ] + [[E, ξβ ], ξα] + [[ξβ , ξα], E] = 0

by the Jacobi identity. Moreover, since the distribution 〈ξ1, ξ2, ξ3〉 is integrable and each ξα is Killing, this distribution
defines a Riemannian foliation of M4n+3, which can be described, at least locally, by a family of Riemannian
submersions. Note that ∇̃ can be interpreted as the lift of the Levi-Civita connection of the space of leaves. If X, Y
are (local) basic vector fields with respect to such a given submersion, then

R̃Xξα Y = ∇̃X ∇̃ξα Y − ∇̃ξα ∇̃X Y − ∇̃[X,ξα]Y = ∇̃X [ξα, Y ] − [ξα, ∇̃X Y ] − ∇̃[X,ξα]Y = 0,

since [ξα, Y ] = [ξα, ∇̃X Y ] = [X, ξα] = 0 because, as X, Y and ∇̃X Y are basic, these brackets are vertical and, by
Lemma 3.2, also horizontal, hence they vanish. It remains to prove (9). We have

R̃XY Z = (∇X ∇̃Y Z)h
− (∇Y ∇̃X Z)h

− ∇̃[X,Y ]h Z − ∇̃ 3∑
α=1

ηα([X,Y ])ξα

Z

=

(
∇X

(
∇Y Z −

3∑
α=1

ηα(∇Y Z)ξα

))h

−

(
∇Y

(
∇X Z −

3∑
α=1

ηα(∇X Z)ξα

))h

− (∇[X,Y ]h Z)h
−

3∑
α=1

ηα([X, Y ])[ξα, Z ]

= (RXY Z)h
+

3∑
α=1

(ηα(∇Y Z)φα X − ηα(∇X Z)φαY )

from which (9) follows. �

We will now show that the Ricci curvature of every 3-cosymplectic manifold vanishes. This result is a consequence
of the projectability of 3-cosymplectic manifolds onto hyper-Kählerian manifolds which is stated in the following
theorem.

Theorem 3.8. Every regular 3-cosymplectic structure projects onto a hyper-Kählerian structure.

Proof. Since the foliation F3 is regular, it is defined by a global submersion f from M4n+3 to the space of leaves
M ′4n

= M4n+3/F3. Then the Riemannian metric g projects to a Riemannian metric G on M ′4n because each ξα is
Killing. Moreover, by (6), the tensor fields φ1, φ2, φ3 project to three tensor fields J1, J2, J3 on M ′4n and it is easy
to check that Jα Jβ =

∑3
γ=1 εαβγ Jγ − δαβ I . In fact (Jα, G) are Hermitian structures which are integrable because

Nα = 0. �

Remark 3.9. Without the assumption of the regularity, Theorem 3.8 still holds, but locally, in the sense that there
exists a family of submersions fi from open subsets Ui of M4n+3 to a 4n-dimensional manifold M ′4n , with {Ui }i∈I an
open covering of M4n+3, such that the 3-cosymplectic structure (φα, ξα, ηα, g) projects under fi to a hyper-Kählerian
structure on M ′4n .
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Corollary 3.10. Every 3-cosymplectic manifold is Ricci-flat.

Proof. According to Remark 3.9, let fi be a local submersion from the 3-cosymplectic manifold M4n+3 to the hyper-
Kählerian manifold M ′4n . Since fi is a Riemannian submersion, we can apply a well-known formula which relates
the Ricci tensors and, M4n+3 and M ′4n (cf. [7]): for any X, Y basic vector fields

Ric(X, Y ) = Ric′( fi∗ X, fi∗Y ) +
1
2
(g(∇X N , Y ) + g(∇Y N , X)) − 2

n∑
i=1

g(AX X i , AY X i ) −

3∑
α=1

g(Tξα X, Tξβ Y ),

(10)

where {X1, . . . , X4n, ξ1, ξ2, ξ3} is a local orthonormal basis with each X i basic, A and T are the O’Neill tensors
associated with fi , and N is the local vector field on M4n+3 given by N =

∑3
α=1 Tξαξα . Note that, since the

horizontal distribution is integrable, A ≡ 0, and by ∇ξα = 0 we get Tξαξα = (∇ξαξα)h
= 0, Tξα Z = (∇ξα Z)v =

(∇Z ξα + [ξα, Z ])v = 0. Hence the formula (10) reduces to

Ric(X, Y ) = Ric′( fi∗ X, fi∗Y ).

But Ric′(X ′, Y ′) = 0 for all X ′, Y ′
∈ Γ (T M), because M ′4n is hyper-Kählerian. Hence Ric = 0 in the horizontal

subbundleH. Finally, it is easy to check that Ric(ξα, ξβ) = 0 and Ric(X, ξβ) = 0 for any X ∈ Γ (H). �

4. The Darboux theorem

Let M4n+3 be a manifold endowed with an almost contact metric 3-structure (φα, ξα, ηα, g). We denote by
Φ[

α: X 7→ Φα(X, · ) the musical isomorphisms induced by the fundamental 2-forms Φα between horizontal vector
fields and vertical 1-forms. Their inverses will be denoted by Φ]

α . We also denote by g[

H the musical isomorphism
induced by the metric between horizontal vector fields and vertical 1-forms, and by φHα :H → H the isomorphisms
induced by the endomorphisms φα: T M → T M .

Lemma 4.1. In any almost 3-contact metric manifold, the following formulas hold, for each α ∈ {1, 2, 3},

g[

H = Φ[
α ◦ φHα , φHα = −

1
2

3∑
β,γ=1

εαβγ Φ]
β ◦ Φ[

γ . (11)

Proof. From Φα(X, Y ) = g(X, φαY ) we have −Φ[
α = g[

H ◦ φHα . It follows that

g[

H = Φ[
α ◦ φHα , (12)

since φ2
α X = −X + ηα(X)ξα = −X for every X ∈ Γ (H). We now prove the second formula of (11). Since the

equation (12) holds for each α ∈ {1, 2, 3}, we get

φHβ ◦ φHγ = −Φ]
β ◦ Φ[

γ , (13)

for each β, γ ∈ {1, 2, 3}. Moreover, in view of (2), we have φHβ ◦ φHγ =
∑3

α=1 εαβγ φHα . Thus we obtain∑3
α=1 εαβγ φHα = −Φ]

β ◦ Φ[
γ , that is 2φHα = −

∑3
β,γ=1 εαβγ Φ]

β ◦ Φ[
γ . �

Corollary 4.2. In any almost 3-contact metric manifold, the following formula holds in the horizontal subbundleH,

g[

H = −Φ[
1 ◦ Φ]

2 ◦ Φ[
3.

Proof. From the two equalities in (11) we obtain

g[

H = −
1
2
Φ[

1 ◦ (Φ]
2 ◦ Φ[

3 − Φ]
3 ◦ Φ[

2).

On the other hand, from (13) and (2) we obtain Φ[
2 ◦ φH3 = −Φ[

3 ◦ φH2 . The claim follows. �
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Now we prove that a 3-Sasakian manifold cannot admit any Darboux-like coordinate system. Here for “Darboux-
like coordinate system” we mean local coordinates {x1, . . . , x4n, z1, z2, z3} with respect to which, for each α ∈

{1, 2, 3}, the fundamental 2-forms Φα = dηα have constant components and ξα = a1
α

∂
∂z1

+ a2
α

∂
∂z2

+ a3
α

∂
∂z3

, aβ
α

being functions depending only on the coordinates z1, z2, z3. This is a natural generalisation of the standard Darboux
coordinates for contact manifolds.

Theorem 4.3. Let (M4n+3, φα, ξα, ηα, g) be a 3-Sasakian manifold. Then M4n+3 does not admit any Darboux-like
coordinate system.

Proof. Let p be a point of M4n+3. Then in view of Theorem 2.1 there exist an open neighbourhood U of p and a (local)
Riemannian submersion f with connected fibres from U onto a quaternionic Kählerian manifold M ′4n , such that
ker( f∗) = 〈ξ1, ξ2, ξ3〉. Note that the horizontal vectors with respect to f are just the vectors belonging toH, i.e. those
orthogonal to ξ1, ξ2, ξ3. Now, suppose by contradiction that about the point p there exists a Darboux coordinate
system, that is an open neighbourhood V with local coordinates {x1, . . . , x4n, z1, z2, z3} as above. We can assume that
U = V . We decompose each vector field ∂

∂xi
into its horizontal and vertical components, ∂

∂xi
= X i +

∑3
α=1 ηα( ∂

∂xi
)ξα .

Note that

ηα

(
∂

∂xi

)
=

1
2

3∑
β,γ=1

εαβγ g
(

∂

∂xi
, φβξγ

)
=

1
2

3∑
β,γ=1

εαβγ dηβ

(
∂

∂xi
, ξγ

)

=
1
2

3∑
β,γ,δ=1

εαβγ aδ
γ dηβ

(
∂

∂xi
,

∂

∂zδ

)
, (14)

so that ηα( ∂
∂xi

) are functions which do not depend on the coordinates xi . Consequently, the only eventually

non-constant components of each horizontal vector field X i =
∂

∂xi
−
∑3

α=1 ηα( ∂
∂xi

)ξα in the holonomic basis
( ∂
∂x1

, . . . , ∂
∂x4n

, ∂
∂z1

, ∂
∂z2

, ∂
∂z3

) depend at most on the coordinates z1, z2, z3. Actually, for each i ∈ {1, . . . , 4n}, X i is a
basic vector field with respect to the submersion f , thus its components do not depend even on the fibre coordinates
zα , hence they are constant. For proving this it is sufficient to show that, for each α ∈ {1, 2, 3}, [X i , ξα] is vertical.
Indeed,

[X i , ξα] =

3∑
β=1

∂aβ
α

∂xi

∂

∂zβ

+

3∑
β=1

[
ηβ

(
∂

∂xi

)
ξβ , ξα

]
=

3∑
β=1

[
ηβ

(
∂

∂xi

)
ξβ , ξα

]
because the functions aβ

α do not depend on the coordinates xi . Then by Corollary 4.2

g(X i , X j ) = −(dη
[
1 ◦ dη

]
2 ◦ dη

[
3)(X i )(X j ) (15)

and so the functions g(X i , X j ) are constant since each X i has constant components and the 2-forms dηα are assumed
to have constant components, too. The next step is to note that, for all i, j ∈ {1, . . . , 4n}, the brackets [X i , X j ] are
vertical vector fields. We have, by (14),

[X i , X j ] =

[
∂

∂xi
,

∂

∂x j

]
+

3∑
α,β=1

[
ηα

(
∂

∂xi

)
ξα, ηβ

(
∂

∂x j

)
ξβ

]

−

3∑
α=1

[
ηα

(
∂

∂xi

)
ξα,

∂

∂x j

]
−

3∑
β=1

[
∂

∂xi
, ηβ

(
∂

∂x j

)
ξβ

]

= 2
3∑

α,β,γ=1

ηα

(
∂

∂xi

)
ηβ

(
∂

∂x j

)
εαβγ ξγ .

Then, for all i, j, k ∈ {1, . . . , 4n}, using (7) and the Koszul formula for the Levi-Civita covariant derivative we obtain

2g(∇̃X i X j , Xk) = 2g(∇X i X j , Xk) = X i (g(X j , Xk)) + X j (g(Xk, X i )) − Xk(g(X i , X j ))

− g([X j , Xk], X i ) + g([Xk, X i ], X j ) + g([X i , X j ], Xk) = 0,
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so that ∇̃X i X j = 0. But ∇̃ projects locally to the Levi-Civita connection ∇
′ of the quaternionic Kählerian manifold

M ′4n under the Riemannian submersion f so that in particular we would have that ∇
′ is flat and this cannot happen

because the scalar curvature of M ′4n , by Theorem 2.1, must be strictly positive. �

Now we prove a Darboux theorem for 3-cosymplectic manifolds.

Theorem 4.4. Around each point of a flat 3-cosymplectic manifold M4n+3 there are local coordinates
{x1, . . . , xn, y1, . . . , yn, u1, . . . , un, v1, . . . , vn, z1, z2, z3} such that, for each α ∈ {1, 2, 3}, ηα = dzα , ξα =

∂
∂zα

and, moreover,

Φ1 = 2
n∑

i=1

(dxi ∧ dyi + dui ∧ dvi ) − 2dz2 ∧ dz3, (16)

Φ2 = 2
n∑

i=1

(dxi ∧ dui − dyi ∧ dvi ) + 2dz1 ∧ dz3, (17)

Φ3 = 2
n∑

i=1

(dxi ∧ dvi + dyi ∧ dui ) − 2dz1 ∧ dz2, (18)

φ1, φ2 and φ3 are represented, respectively, by the (4n + 3) × (4n + 3)-matrices

φ1 =



0 −In 0 0 0 0 0
In 0 0 0 0 0 0
0 0 0 −In 0 0 0
0 0 In 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 1 0


, (19)

φ2 =



0 0 −In 0 0 0 0
0 0 0 In 0 0 0
In 0 0 0 0 0 0
0 −In 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 −1 0 0


, (20)

φ3 =



0 0 0 −In 0 0 0
0 0 −In 0 0 0 0
0 In 0 0 0 0 0
In 0 0 0 0 0 0
0 0 0 0 0 −1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0


. (21)

Proof. Let p be a point of M4n+3. Since M4n+3 is flat there exists a neighbourhood U of p where the curvature tensor
field vanishes identically. Moreover, one can prove by some linear algebra that there exist horizontal vectors e1, . . . , en
such that {e1, . . . , en, φ1e1, . . . , φ1en, φ2e1, . . . , φ2en, φ3e1, . . . , φ3en, ξ1p , ξ2p , ξ3p } is an orthonormal basis of Tp M
satisfying the equalities

Φ1(ei , φ1e j ) = δi j , Φ1(φ2ei , φ3e j ) = δi j , Φ1(ξ2p , ξ3p ) = −1,

Φ2(ei , φ2e j ) = δi j , Φ2(φ1ei , φ3ei ) = −δi j , Φ2(ξ1p , ξ3p ) = 1,

Φ3(ei , φ3e j ) = δi j , Φ3(φ1ei , φ2e j ) = δi j , Φ3(ξ1p , ξ2p ) = −1,
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and such that the values of the 2-forms Φα on all the other pairs of basis vectors vanish. Now we define 4n vector
fields X i , Yi , Ui , Vi on U by parallel transport of the vectors ei , φ1ei , φ2ei , φ3ei , i ∈ {1, . . . , n}. Note that the
definition is well-posed because the parallel transport does not depend on the curve. Since the Levi-Civita connection
is a metric connection and since ∇ξα = 0 we have that {X1, . . . , Xn, Y1, . . . , Yn, U1, . . . , Un, V1, . . . , Vn, ξ1, ξ2, ξ3}

is an orthonormal frame on U . Moreover by ∇φα = 0 we get that

Yi = φ1 X i , Ui = φ2 X i , Vi = φ3 X i , (22)

and by ∇Φα = 0 we have

Φ1(X i , Y j ) = δi j , Φ1(Ui , V j ) = δi j , Φ1(ξ2, ξ3) = −1, (23)
Φ2(X i , U j ) = δi j , Φ2(Yi , V j ) = −δi j , Φ2(ξ1, ξ3) = 1, (24)
Φ3(X i , V j ) = δi j , Φ3(Yi , U j ) = δi j , Φ3(ξ1, ξ2) = −1, (25)

and the values of the 2-forms Φα on all the other pairs of vector fields belonging to the orthonormal frame vanish.
Since the vector fields X i , Yi , Ui , Vi are, by construction, ∇-parallel we have that the bracket of each pair of these
vector fields vanishes identically. This, together with (4) and the vanishing of the brackets [X i , ξα], [Yi , ξα], [Ui , ξα]

and [Vi , ξα] implies the existence of local coordinates {x1, . . . , xn, y1, . . . , yn, u1, . . . , un, v1, . . . , vn, z1, z2, z3} with
respect to which

X i =
∂

∂xi
, Yi =

∂

∂yi
, Ui =

∂

∂ui
, Vi =

∂

∂vi
,

ξ1 =
∂

∂z1
, ξ2 =

∂

∂z2
, ξ3 =

∂

∂z3
.

Now, as the 1-forms ηα are closed, they are locally exact, and we have (eventually reducing U ) ηα = d fα for some
functions fα ∈ C∞(U ), and from the relations ηα(X i ) = ηα(Yi ) = ηα(Ui ) = ηα(Vi ) = 0, ηα(ξβ) = δαβ it follows
that ∂ fα

∂xi
=

∂ fα
∂yi

=
∂ fα
∂ui

=
∂ fα
∂vi

= 0, ∂ fα
∂zβ

= δαβ . Hence, for each α ∈ {1, 2, 3}, ηα = dzα . Next, by (23)–(25), we get

(16)–(18). Finally, by (22) and by φαξβ =
∑3

γ=1 εαβγ ξγ we deduce that with respect to this coordinate system φ1, φ2
and φ3 are represented by the matrices (19)–(21), respectively. �

Arguing as in Theorem 4.3 and taking into account that the “vertical” terms Rξαξβ and the “mixed” terms RXξα of
the curvature tensor (with X ∈ Γ (H)) vanish, one can prove the converse of Theorem 4.4:

Proposition 4.5. Let (M4n+3, φα, ξα, ηα, g) be a 3-cosymplectic manifold. If each point of M4n+3 admits a Darboux
coordinate system such that (16)–(18) of Theorem 4.4 hold, then M4n+3 is flat.

Remark 4.6. We conclude noting that in any almost 3-contact metric manifold (M, φα, ξα, ηα, g) (and in particular
in any hyper-contact manifold (cf. [3])) the metric g is uniquely determined by the three fundamental 2-forms Φα and
the three Reeb vector fields ξα . In particular, in the case of 3-Sasakian manifolds the metric is uniquely determined by
the three contact forms ηα . Indeed, on the one hand, it follows from Corollary 4.2 that

g(X, Y ) = −(dη
[
1 ◦ dη

]
2 ◦ dη

[
3(X))(Y ),

for any X, Y ∈ Γ (H). On the other hand, we have g(ξα, ξβ) = δαβ and g(X, ξα) = ηα(X) = 0. This remark gives an
answer to the open problem raised by Banyaga in the Remark 11 of [3].
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