

Available online at www.sciencedirect.com

JOURNAL OF GEOMETRY AND PHYSICS

Journal of Geometry and Physics 57 (2007) 2509-2520

www.elsevier.com/locate/jgp

3-Sasakian manifolds, 3-cosymplectic manifolds and Darboux theorem

Beniamino Cappelletti Montano*, Antonio De Nicola

Department of Mathematics, University of Bari, Via E. Orabona 4, I-70125 Bari, Italy

Received 27 November 2006; received in revised form 11 September 2007; accepted 11 September 2007 Available online 20 September 2007

Dedicated to the memory of Giulio Minervini on the anniversary of his departure.

Abstract

We present a compared analysis of some properties of 3-Sasakian and 3-cosymplectic manifolds. We construct a canonical connection on an almost 3-contact metric manifold which generalises the Tanaka–Webster connection of a contact metric manifold and we use this connection to show that a 3-Sasakian manifold does not admit any Darboux-like coordinate system. Moreover, we prove that any 3-cosymplectic manifold is Ricci-flat and admits a Darboux coordinate system if and only if it is flat. © 2007 Elsevier B.V. All rights reserved.

MSC: 53C15; 53C25; 53B05; 53D15

Keywords: Darboux theorem; Almost contact metric 3-structures; 3-Sasakian manifolds; 3-cosymplectic manifolds; Hyper-cosymplectic manifolds; Generalised Tanaka–Webster connection

1. Introduction

Both 3-Sasakian and 3-cosymplectic manifolds belong to the class of almost contact (metric) 3-structures, introduced by Kuo [13] and, independently, by Udriste [17]. The study of 3-Sasakian manifolds has been conducted by several authors (see for example [5,6] and references therein) due to the increasing awareness of their importance in mathematics and in physics, together with the closely linked hyper-Kählerian and quaternionic Kählerian manifolds. Recently they have made an appearance also in supergravity and M-theory (see [1,2,8]). Less studied, so far, are the 3-cosymplectic manifolds, also called hyper-cosymplectic, but we can list some recent publications [7,12,14,16]. For example, Kashiwada and his collaborators proved in [12] that any *b*-Kenmotsu (see [4,10]) almost contact 3-structure must be 3-cosymplectic.

In this paper we present a compared analysis of some properties of 3-Sasakian and 3-cosymplectic manifolds. We start with a brief review of some known results on these classes of manifolds, contained in Section 2. In Section 3 we construct a canonical connection on an almost 3-contact metric manifold and we study its curvature and torsion

^{*} Corresponding author. Tel.: +39 080 5442693; fax: +39 080 5442481.

E-mail addresses: cappelletti@dm.uniba.it (B. Cappelletti Montano), antondenicola@gmail.com (A. De Nicola).

^{0393-0440/\$ -} see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.geomphys.2007.09.001

analysing also its behaviour in the special cases of 3-Sasakian and 3-cosymplectic manifolds. Our connection can be interpreted as a generalisation of the (generalised) Tanaka–Webster connection of a contact metric manifold, introduced by Tanno in [15]. The section is concluded by a further investigation of the properties of 3-cosymplectic manifolds concerning their projectability which leads us to prove that every 3-cosymplectic manifold is Ricciflat. In the final section we analyse the possibility of finding a Darboux-like coordinate system on 3-Sasakian and 3-cosymplectic manifolds. Firstly we establish a relation which holds in any almost 3-contact metric manifold linking the horizontal part of the metric with the three fundamental forms Φ_{α} . This relation is responsible for a kind of rigidity of this class of manifolds which links the existence of Darboux coordinates to the flatness of the manifold and does not hold in the case of a single Sasakian or cosymplectic structure. In particular, on the one hand, using our canonical connection and the (local) projection of a 3-Sasakian manifold over a quaternionic Kählerian manifold (see [5,9]), we show that 3-Sasakian manifolds, unlike the Sasakian ones, do not admit any Darboux-like coordinate system. This result is related to the fact that 3-Sasakian manifolds are not (horizontally) flat. On the other hand, we show that a 3-cosymplectic manifold admits a Darboux coordinate system in the neighbourhood of each point if and only if its metric is flat.

2. Preliminaries

An almost contact manifold is an odd-dimensional manifold M which carries a field ϕ of endomorphisms of the tangent spaces, a vector field ξ , called *characteristic* or *Reeb vector field*, and a 1-form η satisfying $\phi^2 = -I + \eta \otimes \xi$ and $\eta(\xi) = 1$, where $I: TM \to TM$ is the identity mapping. From the definition it follows also that $\phi\xi = 0, \eta \circ \phi = 0$ and that the (1, 1)-tensor field ϕ has constant rank 2n (cf. [4]). An almost contact manifold (M, ϕ, ξ, η) is said to be *normal* when the tensor field $N = [\phi, \phi] + 2d\eta \otimes \xi$ vanishes identically, $[\phi, \phi]$ denoting the Nijenhuis tensor of ϕ . It is known that any almost contact manifold (M, ϕ, ξ, η) admits a Riemannian metric g such that

$$g(\phi E, \phi F) = g(E, F) - \eta(E)\eta(F) \tag{1}$$

holds for all $E, F \in \Gamma(TM)$. This metric g is called a *compatible metric* and the manifold M together with the structure (ϕ, ξ, η, g) is called an *almost contact metric manifold*. As an immediate consequence of (1), one has $\eta = g(\cdot, \xi)$. The 2-form Φ on M defined by $\Phi(E, F) = g(E, \phi F)$ is called the *fundamental 2-form* of the almost contact metric manifold M. Almost contact metric manifolds such that both η and Φ are closed are called *almost cosymplectic manifolds* and almost contact metric manifolds such that $d\eta = \Phi$ are called *contact metric manifolds*. Finally, a normal almost cosymplectic manifold is called a *cosymplectic manifold* and a normal contact metric manifold is said to be a *Sasakian manifold*. In terms of the covariant derivative of ϕ the cosymplectic and the Sasakian conditions can be expressed respectively by

$$\nabla \phi = 0$$

and

$$(\nabla_E \phi)F = g(E, F)\xi - \eta(F)E$$

for all $E, F \in \Gamma(TM)$. It should be noted that both in Sasakian and in cosymplectic manifolds ξ is a Killing vector field.

An *almost* 3-*contact manifold* is a (4n + 3)-dimensional smooth manifold M endowed with three almost contact structures $(\phi_1, \xi_1, \eta_1), (\phi_2, \xi_2, \eta_2), (\phi_3, \xi_3, \eta_3)$ satisfying the following relations, for every $\alpha, \beta \in \{1, 2, 3\}$,

$$\phi_{\alpha}\phi_{\beta} - \eta_{\beta} \otimes \xi_{\alpha} = \sum_{\gamma=1}^{3} \epsilon_{\alpha\beta\gamma}\phi_{\gamma} - \delta_{\alpha\beta}I, \qquad \phi_{\alpha}\xi_{\beta} = \sum_{\gamma=1}^{3} \epsilon_{\alpha\beta\gamma}\xi_{\gamma}, \qquad \eta_{\alpha} \circ \phi_{\beta} = \sum_{\gamma=1}^{3} \epsilon_{\alpha\beta\gamma}\eta_{\gamma}, \tag{2}$$

where $\epsilon_{\alpha\beta\gamma}$ is the totally antisymmetric symbol. This notion was introduced by Kuo [13] and, independently, by Udriste [17]. In [13] Kuo proved that given an almost contact 3-structure ($\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}$), there exists a Riemannian metric *g* compatible with each of them and hence we can speak of *almost contact metric 3-structures*. It is well-known that in any almost 3-contact metric manifold the Reeb vector fields ξ_1, ξ_2, ξ_3 are orthonormal with respect to the compatible metric *g* and that the structural group of the tangent bundle is reducible to $Sp(n) \times I_3$. Moreover, by putting $\mathcal{H} = \bigcap_{\alpha=1}^{3} \ker(\eta_{\alpha})$ one obtains a 4*n*-dimensional distribution on *M* and the tangent bundle splits as the

orthogonal sum $TM = \mathcal{H} \oplus \langle \xi_1, \xi_2, \xi_3 \rangle$. For a reason which will be clearer later we call any vector belonging to the distribution \mathcal{H} "horizontal" and any vector belonging to the distribution $\langle \xi_1, \xi_2, \xi_3 \rangle$ "vertical". An almost 3-contact manifold *M* is said to be *hyper-normal* if each almost contact structure ($\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}$) is normal.

When the three structures (ϕ_{α} , ξ_{α} , η_{α} , g) are contact metric structures, we say that M is a 3-contact metric manifold and when they are Sasakian, that is when each structure (ϕ_{α} , ξ_{α} , η_{α}) is also normal, we call M a 3-Sasakian manifold. However these two notions coincide. Indeed as it has been proved in 2001 by Kashiwada [11], every contact metric 3-structure is 3-Sasakian. In any 3-Sasakian manifold we have that, for each $\alpha \in \{1, 2, 3\}$,

$$\phi_{\alpha} = -\nabla \xi_{\alpha}. \tag{3}$$

Using this, one obtains that $[\xi_1, \xi_2] = 2\xi_3$, $[\xi_2, \xi_3] = 2\xi_1$, $[\xi_3, \xi_1] = 2\xi_2$. In particular, the vertical distribution $\langle \xi_1, \xi_2, \xi_3 \rangle$ is integrable and defines a 3-dimensional foliation of M denoted by \mathcal{F}_3 . Since ξ_1, ξ_2, ξ_3 are Killing vector fields, \mathcal{F}_3 is a Riemannian foliation. Moreover it has totally geodesic leaves of constant curvature 1. On the contrary, in a 3-Sasakian manifold the horizontal distribution \mathcal{H} is never integrable. About the foliation \mathcal{F}_3 , Ishihara [9] has shown that if \mathcal{F}_3 is regular then the space of leaves is a quaternionic Kählerian manifold. Boyer, Galicki and Mann have proved the following more general result.

Theorem 2.1 ([5]). Let $(M^{4n+3}, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be a 3-Sasakian manifold such that the Killing vector fields ξ_1, ξ_2, ξ_3 are complete. Then

- (i) M^{4n+3} is an Einstein manifold of positive scalar curvature equal to 2(2n + 1)(4n + 3).
- (ii) Each leaf \mathcal{L} of the foliation \mathcal{F}_3 is a 3-dimensional homogeneous spherical space form.
- (iii) The space of leaves M^{4n+3}/\mathcal{F} is a quaternionic Kählerian orbifold of dimension 4n with positive scalar curvature equal to 16n(n+2).

By an *almost* 3-*cosymplectic manifold* we mean an almost 3-contact metric manifold M such that each almost contact metric structure ($\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g$) is almost cosymplectic. The almost 3-cosymplectic structure ($\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g$) is called 3-*cosymplectic* if it is hyper-normal. In this case M is said to be a 3-*cosymplectic manifold*. However it has been proved recently that these two notions are the same:

Theorem 2.2 ([7, Theorem 4.13]). Any almost 3-cosymplectic manifold is 3-cosymplectic.

In any 3-cosymplectic manifold we have that ξ_{α} , η_{α} , ϕ_{α} and Φ_{α} are ∇ -parallel. In particular

$$[\xi_{\alpha},\xi_{\beta}] = \nabla_{\xi_{\alpha}}\xi_{\beta} - \nabla_{\xi_{\beta}}\xi_{\alpha} = 0 \tag{4}$$

for all $\alpha, \beta \in \{1, 2, 3\}$, so that, as in any 3-Sasakian manifold, $\langle \xi_1, \xi_2, \xi_3 \rangle$ defines a 3-dimensional foliation \mathcal{F}_3 of M^{4n+3} . However, unlike the case of 3-Sasakian geometry, the horizontal subbundle \mathcal{H} of a 3-cosymplectic manifold is integrable because, for all $X, Y \in \Gamma(\mathcal{H}), \eta_{\alpha}([X, Y]) = -2d\eta_{\alpha}(X, Y) = 0$ since $d\eta_{\alpha} = 0$.

3. Further properties of 3-Sasakian and 3-cosymplectic manifolds

In this section we investigate on further properties of 3-Sasakian and 3-cosymplectic manifolds. We start with the following preliminary result.

Lemma 3.1. Let $(M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be an almost 3-contact metric manifold. Then if M is 3-Sasakian we have, for each $\alpha, \beta \in \{1, 2, 3\}$,

$$\mathcal{L}_{\xi_{\alpha}}\phi_{\beta} = 2\sum_{\gamma=1}^{3} \epsilon_{\alpha\beta\gamma}\phi_{\gamma},\tag{5}$$

and if M is 3-cosymplectic,

$$\mathcal{L}_{\xi_{\alpha}}\phi_{\beta} = 0. \tag{6}$$

Proof. For any $X \in \Gamma(\mathcal{H})$ we have, using (3),

$$\begin{aligned} (\mathcal{L}_{\xi_2}\phi_1)X &= \nabla_{\xi_2}(\phi_1X) - \nabla_{\phi_1X}\xi_2 - \phi_1\nabla_{\xi_2}X + \phi_1\nabla_X\xi_2 \\ &= (\nabla_{\xi_2}\phi_1)X + \phi_2\phi_1X - \phi_1\phi_2X = -2\phi_3X. \end{aligned}$$

Moreover, we have

$$\begin{aligned} (\mathcal{L}_{\xi_2}\phi_1)\xi_1 &= [\xi_2,\phi_1\xi_1] - \phi_1[\xi_2,\xi_1] = 2\phi_1\xi_3 = -2\xi_3 = -2\phi_3\xi_1, \\ (\mathcal{L}_{\xi_2}\phi_1)\xi_2 &= [\xi_2,\phi_1\xi_2] - \phi_1[\xi_2,\xi_2] = [\xi_2,\xi_3] = 2\xi_1 = -2\phi_3\xi_2, \\ (\mathcal{L}_{\xi_2}\phi_1)\xi_3 &= [\xi_2,\phi_1\xi_3] - \phi_1[\xi_2,\xi_3] = -[\xi_2,\xi_2] - 2\phi_1\xi_1 = 0 = -2\phi_3\xi_3, \end{aligned}$$

from which we conclude that $\mathcal{L}_{\xi_2}\phi_1 = -2\phi_3$. Similarly one can prove $\mathcal{L}_{\xi_3}\phi_1 = 2\phi_2$. Finally, $\mathcal{L}_{\xi_1}\phi_1 = 0$ holds because $(\phi_1, \xi_1, \eta_1, g)$ is a Sasakian structure. The other equalities in (5) can be proved in an analogous way. We now prove (6). For any horizontal vector field X we have

$$(\mathcal{L}_{\xi_{\alpha}}\phi_{\beta})X = \nabla_{\xi_{\alpha}}(\phi_{\beta}X) - \nabla_{\phi_{\beta}X}\xi_{\alpha} - \phi_{\beta}(\nabla_{\xi_{\alpha}}X - \nabla_{X}\xi_{\alpha}) = (\nabla_{\xi_{\alpha}}\phi_{\beta})X = 0$$

and, by using (2) and (4), $(\mathcal{L}_{\xi_{\alpha}}\phi_{\beta})\xi_{\gamma} = [\xi_{\alpha}, \phi_{\beta}\xi_{\gamma}] - \phi_{\beta}[\xi_{\alpha}, \xi_{\gamma}] = 0.$

A common property of 3-Sasakian and 3-cosymplectic manifolds is stated in the following lemma.

Lemma 3.2. Let *M* be a 3-Sasakian or 3-cosymplectic manifold. Then, for any horizontal vector field X, $[X, \xi_{\alpha}]$ is still horizontal.

Proof. $\eta_{\beta}([X, \xi_{\alpha}]) = +X(\eta_{\beta}(\xi_{\alpha})) - \xi_{\alpha}(\eta_{\beta}(X)) - 2d\eta_{\beta}(X, \xi_{\alpha}) = -2d\eta_{\beta}(X, \xi_{\alpha})$, for any $\beta \in \{1, 2, 3\}$. Now, if the structure is 3-cosymplectic $d\eta_{\beta} = 0$ and if it is 3-Sasakian $d\eta_{\beta}(X, \xi_{\alpha}) = g(X, \phi_{\beta}\xi_{\alpha}) = \sum_{\gamma=1}^{3} \epsilon_{\alpha\beta\gamma}\eta_{\gamma}(X) = 0$ since *X* is horizontal.

Now we attach a canonical connection to any manifold M^{4n+3} with an almost contact metric 3-structure $(\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ in the following way. We set

$$\tilde{\nabla}_X Y = (\nabla_X Y)^h, \qquad \tilde{\nabla}_{\xi_\alpha} Y = [\xi_\alpha, Y], \qquad \tilde{\nabla}_{\xi_\alpha} = 0, \tag{7}$$

for all $X, Y \in \Gamma(\mathcal{H})$, where $(\nabla_X Y)^h$ denotes the horizontal component of the Levi-Civita connection. In the following proposition we start the study of the properties of this connection.

Proposition 3.3. Let $(M^{4n+3}, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be an almost 3-contact metric manifold. Then the 1-forms η_1, η_2, η_3 are $\tilde{\nabla}$ -parallel if and only if $d\eta_{\alpha}(X, \xi_{\beta}) = 0$ for any $X \in \Gamma(\mathcal{H})$ and any $\alpha, \beta \in \{1, 2, 3\}$. Furthermore $\tilde{\nabla}$ is a metric connection with respect to g if and only if each ξ_{α} is Killing.

Proof. Since $\tilde{\nabla}_X Y \in \Gamma(\mathcal{H})$ for any $X, Y \in \Gamma(\mathcal{H})$, we have $(\tilde{\nabla}_X \eta_\alpha) Y = 0$ for all $X, Y \in \Gamma(\mathcal{H})$; moreover, from $\tilde{\nabla}\xi_\beta = 0$ and $\eta_\alpha(\xi_\beta) = \delta_{\alpha\beta}$ it follows also that $(\tilde{\nabla}_E \eta_\alpha)\xi_\beta = 0$, for all $E \in \Gamma(TM)$ and $\alpha, \beta \in \{1, 2, 3\}$. So η_α is $\tilde{\nabla}$ -parallel if and only if $(\tilde{\nabla}_{\xi_\beta}\eta_\alpha)X = 0$ for all $\beta \in \{1, 2, 3\}$, i.e. if and only if $\eta_\alpha([\xi_\beta, X]) = 0$ and this is equivalent to requiring that $d\eta_\alpha(X, \xi_\beta) = 0$. Now we prove the second part of the proposition. Firstly, we note that $(\mathcal{L}_{\xi_\alpha}g)(\xi_\beta, \xi_\gamma) = -g([\xi_\alpha, \xi_\beta], \xi_\gamma) - g(\xi_\beta, [\xi_\alpha, \xi_\gamma]) = -2\sum_{\delta=1}^3 (\epsilon_{\alpha\beta\delta}g(\xi_\delta, \xi_\gamma) + \epsilon_{\alpha\gamma\delta}g(\xi_\beta, \xi_\delta)) = -2(\epsilon_{\alpha\beta\gamma} + \epsilon_{\alpha\gamma\beta}) = 0$, and, by Lemma 3.2, $(\mathcal{L}_{\xi_\alpha}g)(X, \xi_\beta) = \xi_\alpha(g(X, \xi_\beta)) - g([\xi_\alpha, X], \xi_\beta) - g(X, 2\epsilon_{\alpha\beta\gamma}\xi_\gamma) = 0$ for $X \in \Gamma(\mathcal{H})$. Next, we observe that for all horizontal vector fields X, Y, Z, we have

$$(\tilde{\nabla}_Z g)(X, Y) = Z(g(X, Y)) - g((\nabla_Z X)^h, Y) - g(X, (\nabla_Z Y)^h)$$

= $Z(g(X, Y)) - g(\nabla_Z X, Y) - g(X, \nabla_Z Y) = 0.$

Moreover, clearly, $(\tilde{\nabla}_Z g)(X, \xi_\alpha) = 0$. Finally, $(\tilde{\nabla}_E g)(\xi_\alpha, \xi_\beta) = 0$ for any $E \in \Gamma(TM)$ and any $\alpha, \beta \in \{1, 2, 3\}$. So g is $\tilde{\nabla}$ -parallel if and only if $(\tilde{\nabla}_{\xi_\alpha} g)(X, Y) = 0$ for any $X, Y \in \Gamma(\mathcal{H})$ and for all $\alpha \in \{1, 2, 3\}$. But, as $\tilde{\nabla} \xi_\alpha = 0$, we have the equality

$$(\overline{\nabla}_{\xi_{\alpha}}g)(X,Y) = \xi_{\alpha}(g(X,Y)) - g([\xi_{\alpha},X],Y) - g(X,[\xi_{\alpha},Y]) = (\mathcal{L}_{\xi_{\alpha}}g)(X,Y)$$

from which we get the assertion.

2512

In general the canonical connection $\tilde{\nabla}$ is not torsion free. Indeed we have the following result.

Proposition 3.4. Let $(M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be an almost 3-contact metric manifold. Then the torsion tensor field \tilde{T} of $\tilde{\nabla}$ is given by

$$\tilde{T}(X,Y) = 2\sum_{\alpha=1}^{3} d\eta_{\alpha}(X,Y)\xi_{\alpha}, \qquad \tilde{T}(X,\xi_{\alpha}) = 0, \qquad \tilde{T}(\xi_{\alpha},\xi_{\beta}) = [\xi_{\beta},\xi_{\alpha}],$$

for all $X, Y \in \Gamma(\mathcal{H})$ and for all $\alpha \in \{1, 2, 3\}$.

Proof. For any horizontal vector fields X, Y we have

$$\tilde{T}(X,Y) = (\nabla_X Y - \nabla_Y X - [X,Y])^h - [X,Y]$$
$$= (T(X,Y))^h - \sum_{\alpha=1}^3 g([X,Y],\xi_\alpha)\xi_\alpha$$
$$= 2\sum_{\alpha=1}^3 d\eta_\alpha(X,Y)\xi_\alpha.$$

Moreover, it follows from (7) that $\tilde{T}(\xi_{\alpha}, X) = [\xi_{\alpha}, X] - [\xi_{\alpha}, X] = 0$. Finally, for all $\alpha, \beta \in \{1, 2, 3\}$, we have easily $\tilde{T}(\xi_{\alpha}, \xi_{\beta}) = -[\xi_{\alpha}, \xi_{\beta}] = [\xi_{\beta}, \xi_{\alpha}]$.

Corollary 3.5. Let $(M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be an almost 3-contact metric manifold such that the 1-forms η_1, η_2, η_3 are $\tilde{\nabla}$ -parallel. Then, the distribution spanned by ξ_1, ξ_2 and ξ_3 is integrable if and only if $\tilde{T}(E, F) = 2 \sum_{\alpha=1}^{3} d\eta_{\alpha}(E, F) \xi_{\alpha}$ for all $E, F \in \Gamma(TM)$.

Proof. From the equality $[\xi_{\beta}, \xi_{\alpha}]^{v} = \sum_{\gamma=1}^{3} \eta_{\gamma} ([\xi_{\beta}, \xi_{\alpha}]) \xi_{\gamma}$ it follows that if the distribution spanned by ξ_{1}, ξ_{2} and ξ_{3} is integrable, then $\tilde{T}(\xi_{\alpha}, \xi_{\beta}) = \sum_{\gamma=1}^{3} \eta_{\gamma} ([\xi_{\beta}, \xi_{\alpha}]) \xi_{\gamma} = 2 \sum_{\gamma=1}^{3} d\eta_{\gamma} (\xi_{\alpha}, \xi_{\beta}) \xi_{\gamma}$. The converse is trivial.

Actually, the requirement that the Reeb vector fields are parallel, together with Propositions 3.3 and 3.4 uniquely characterise the connection $\tilde{\nabla}$. This is shown in the following theorem.

Theorem 3.6. Let $(M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be an almost 3-contact metric manifold. Then there exists a unique connection $\tilde{\nabla}$ on M satisfying the following properties:

(i) $\tilde{\nabla}\xi_1 = \tilde{\nabla}\xi_2 = \tilde{\nabla}\xi_3 = 0$, (ii) $(\tilde{\nabla}_Z g)(X, Y) = 0$, for all $X, Y, Z \in \Gamma(\mathcal{H})$, (iii) $\tilde{T}(X, Y) = 2\sum_{\alpha=1}^{3} d\eta_{\alpha}(X, Y)\xi_{\alpha}$ and $\tilde{T}(X, \xi_{\alpha}) = 0$, for all $X, Y \in \Gamma(\mathcal{H})$.

Furthermore, if M is 3-Sasakian, then for all $E, F \in \Gamma(TM)$

$$(\tilde{\nabla}_E \phi_\alpha) F = -\sum_{\beta,\gamma=1}^3 \epsilon_{\alpha\beta\gamma} (\eta_\beta(E)\phi_\gamma F^h - \eta_\gamma(E)\phi_\beta F^h);$$
(8)

if *M* is 3-cosymplectic, then the connection $\tilde{\nabla}$ coincides with the Levi-Civita connection and in particular we have, for each $\alpha \in \{1, 2, 3\}$, $\tilde{\nabla}\phi_{\alpha} = 0$.

Proof. The connection defined by (7) satisfies the properties (i)–(iii). Thus we have only to prove the uniqueness of such a connection. Let $\hat{\nabla}$ be any connection on M verifying the properties (i)–(iii). From (i) we get $\hat{\nabla}\xi_{\alpha} = 0 = \tilde{\nabla}\xi_{\alpha}$, and, from (iii), $0 = \hat{T}(\xi_{\alpha}, X) = \hat{\nabla}_{\xi_{\alpha}} X - \hat{\nabla}_X \xi_{\alpha} - [\xi_{\alpha}, X] = \hat{\nabla}_{\xi_{\alpha}} X - [\xi_{\alpha}, X]$, which implies that $\hat{\nabla}_{\xi_{\alpha}} X = [\xi_{\alpha}, X] = \tilde{\nabla}_{\xi_{\alpha}} X$ for all $X \in \Gamma(\mathcal{H})$. Thus we have only to verify that $\hat{\nabla}_X Y = \tilde{\nabla}_X Y$ for all $X, Y \in \Gamma(\mathcal{H})$, that is $\hat{\nabla}_X Y = (\nabla_X Y)^h$ for all $X, Y \in \Gamma(\mathcal{H})$. In order to check this equality, we define another connection on M, by setting

$$\bar{\nabla}_E F := \begin{cases} \hat{\nabla}_E F + (\nabla_E F)^v, & \text{for } E, F \in \Gamma(\mathcal{H}); \\ \nabla_E F,, & \text{for } E \in \Gamma(\mathcal{H}^\perp) \text{ and } F \in \Gamma(TM); \\ \nabla_E F,, & \text{for } E \in \Gamma(TM) \text{ and } F \in \Gamma(\mathcal{H}^\perp), \end{cases}$$

where $(\nabla_E F)^v$ denotes the vertical component of the Levi-Civita covariant derivative. If we prove that $\overline{\nabla}$ coincides with the Levi-Civita connection, then we will conclude that for all $X, Y \in \Gamma(\mathcal{H}) \nabla_X Y = \overline{\nabla}_X Y = \widehat{\nabla}_X Y + (\nabla_X Y)^v$, from which $\widehat{\nabla}_X Y = (\nabla_X Y)^h$. Firstly, note that for all $X, Y \in \Gamma(\mathcal{H})$, using the definition of the Levi-Civita connection ∇ we have

$$\begin{split} \bar{\nabla}_{X}Y &= \hat{\nabla}_{X}Y + \sum_{\alpha=1}^{3} g(\nabla_{X}Y, \xi_{\alpha})\xi_{\alpha} \\ &= \hat{\nabla}_{X}Y - \frac{1}{2}\sum_{\alpha=1}^{3} (\xi_{\alpha}(g(X, Y)) - g([\xi_{\alpha}, X], Y) - g([\xi_{\alpha}, Y], X) - g([X, Y], \xi_{\alpha}))\xi_{\alpha} \\ &= \hat{\nabla}_{X}Y + \frac{1}{2}\sum_{\alpha=1}^{3} (-(\mathcal{L}_{\xi_{\alpha}}g)(X, Y) + \eta_{\alpha}([X, Y]))\xi_{\alpha} \\ &= \hat{\nabla}_{X}Y - \sum_{\alpha=1}^{3} \left(\frac{1}{2}(\mathcal{L}_{\xi_{\alpha}}g)(X, Y) + d\eta_{\alpha}(X, Y)\right)\xi_{\alpha}. \end{split}$$

Now we prove that the connection $\overline{\nabla}$ is metric and torsion free. For all $X, Y, Y' \in \Gamma(\mathcal{H})$

$$(\bar{\nabla}_X g)(Y, Y') = X(g(Y, Y')) - g(\hat{\nabla}_X Y, Y') - g(Y, \hat{\nabla}_X Y') = (\hat{\nabla}_X g)(Y, Y') = 0$$

by the preceding equality and the condition (ii). Next, by using (iii), we obtain $\overline{T}(X, Y) = \hat{T}(X, Y) - 2\sum_{\alpha=1}^{3} d\eta_{\alpha}(X, Y)\xi_{\alpha} = 0$. Thus $\overline{\nabla}$ coincides with the Levi-Civita connection of *M* and this implies that $\hat{\nabla} = \overline{\nabla}$.

Now we prove the second part of the theorem. Assume that M is 3-Sasakian. Then for any $X, Y \in \Gamma(\mathcal{H})$, using (3) and the fact that $\nabla g = 0$ we have

$$\begin{split} (\tilde{\nabla}_X \phi_1) Y &= (\nabla_X \phi_1) Y - \sum_{\alpha=1}^3 g(\nabla_X (\phi_1 Y), \xi_\alpha) \xi_\alpha + \phi_1 \left(\sum_{\alpha=1}^3 g(\nabla_X Y, \xi_\alpha) \xi_\alpha \right) \\ &= g(X, Y) \xi_1 - \eta_1(Y) X + \sum_{\alpha=1}^3 g(\phi_1 Y, \nabla_X \xi_\alpha) \xi_\alpha + g(\nabla_X Y, \xi_2) \xi_3 - g(\nabla_X Y, \xi_3) \xi_2 \\ &= -g(\phi_1 Y, \phi_2 X) \xi_2 - g(\phi_1 Y, \phi_3 X) \xi_3 + g(Y, \phi_2 X) \xi_3 - g(Y, \phi_3 X) \xi_2 \\ &= g(Y, \phi_1 \phi_2 X) \xi_2 + g(Y, \phi_1 \phi_3 X) \xi_3 + g(Y, \phi_2 X) \xi_3 - g(Y, \phi_3 X) \xi_2 = 0. \end{split}$$

Moreover, for any $\alpha, \beta, \gamma \in \{1, 2, 3\}$, $(\tilde{\nabla}_E \phi_\beta) \xi_\gamma = \tilde{\nabla}_E (\phi_\beta \xi_\gamma) - \phi_\beta \tilde{\nabla}_E \xi_\gamma = \sum_{\alpha=1}^3 \epsilon_{\alpha\beta\gamma} \tilde{\nabla}_E \xi_\alpha = 0$. Finally, for any $X \in \Gamma(\mathcal{H})$

$$(\tilde{\nabla}_{\xi_1}\phi_1)X = \tilde{\nabla}_{\xi_1}(\phi_1X) - \phi_1\tilde{\nabla}_{\xi_1}X = [\xi_1, \phi_1X] - \phi_1[\xi_1, X] = (\mathcal{L}_{\xi_1}\phi_1)X,$$

so $(\tilde{\nabla}_{\xi_1}\phi_1)X = (\mathcal{L}_{\xi_1}\phi_1)X$. Similarly, one can find $(\tilde{\nabla}_{\xi_2}\phi_1)X = (\mathcal{L}_{\xi_2}\phi_1)X$ and $(\tilde{\nabla}_{\xi_3}\phi_1)X = (\mathcal{L}_{\xi_3}\phi_1)X$. Hence, by applying (5), we have $(\tilde{\nabla}_{\xi_1}\phi_1)X = 0$, $(\tilde{\nabla}_{\xi_2}\phi_1)X = -2\phi_3X$, $(\tilde{\nabla}_{\xi_3}\phi_1)X = 2\phi_2X$. Thus, if we decompose any pair of vector fields $E, F \in \Gamma(TM)$ in their horizontal and vertical parts, $E = E^h + \sum_{\alpha=1}^{3} \eta_{\alpha}(E)\xi_{\alpha}$ and $F = F^h + \sum_{\alpha=1}^{3} \eta_{\alpha}(F)\xi_{\alpha}$, we have

$$\begin{split} (\tilde{\nabla}_{E}\phi_{1})F &= \sum_{\alpha=1}^{3} (\tilde{\nabla}_{\eta_{\alpha}(E)\xi_{\alpha}}\phi_{1})F^{h} \\ &= \eta_{2}(E)(\tilde{\nabla}_{\xi_{2}}\phi_{1})F^{h} + \eta_{3}(E)(\tilde{\nabla}_{\xi_{3}}\phi_{1})F^{h} \\ &= -2\eta_{2}(E)\phi_{3}F^{h} + 2\eta_{3}(E)\phi_{2}F^{h}. \end{split}$$

The other equations involving ϕ_2 and ϕ_3 can be proved in a similar way.

Finally, let M be 3-cosymplectic. Then $\nabla_X Y$ is horizontal for every $X, Y \in \Gamma(\mathcal{H})$, since $g(\nabla_X Y, \xi_\alpha) = -g(Y, \nabla_X \xi_\alpha) = 0$ for all $\alpha \in \{1, 2, 3\}$. Hence, $\nabla_X Y = (\nabla_X Y)^h = \tilde{\nabla}_X Y$. Moreover, $\nabla \xi_\alpha = 0 = \tilde{\nabla} \xi_\alpha$. Finally, $\nabla_{\xi_\alpha} X = \nabla_X \xi_\alpha - [X, \xi_\alpha] = [\xi_\alpha, X] = \tilde{\nabla}_{\xi_\alpha} X$. We conclude that $\nabla = \tilde{\nabla}$.

In the next proposition we analyse the curvature of the canonical connection $\tilde{\nabla}$ in a 3-Sasakian manifold.

Proposition 3.7. Let $(M^{4n+3}, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be a 3-Sasakian manifold. Then the curvature tensor of $\tilde{\nabla}$ verifies $\tilde{R}_{EF}\xi_{\alpha} = 0$, $\tilde{R}_{\xi_{\alpha}\xi_{\beta}} = 0$ and $\tilde{R}_{X\xi_{\alpha}} = 0$ for all $E, F \in \Gamma(TM)$, $X \in \Gamma(\mathcal{H})$ and $\alpha, \beta \in \{1, 2, 3\}$. Moreover, for all $X, Y, Z \in \Gamma(\mathcal{H})$,

$$\tilde{R}_{XY}Z = (R_{XY}Z)^h + \sum_{\alpha=1}^3 (d\eta_\alpha(Y, Z)\phi_\alpha X - d\eta_\alpha(X, Z)\phi_\alpha Y).$$
(9)

Proof. That $\tilde{R}_{EF}\xi_{\alpha} = 0$ is obvious since $\tilde{\nabla}\xi_{\alpha} = 0$. Next, for any $\alpha, \beta \in \{1, 2, 3\}$,

$$\tilde{R}_{\xi_{\alpha}\xi_{\beta}}E = \tilde{\nabla}_{\xi_{\alpha}}[\xi_{\beta}, E] - \tilde{\nabla}_{\xi_{\beta}}[\xi_{\alpha}, E] - \tilde{\nabla}_{2\sum_{\gamma=1}^{3}\epsilon_{\alpha\beta\gamma}\xi_{\gamma}}E$$

$$= [\xi_{\alpha}, [\xi_{\beta}, E]] - [\xi_{\beta}, [\xi_{\alpha}, E]] - 2\sum_{\gamma=1}^{3}\epsilon_{\alpha\beta\gamma}[\xi_{\gamma}, E]$$

$$= [[\xi_{\alpha}, E], \xi_{\beta}] + [[E, \xi_{\beta}], \xi_{\alpha}] + [[\xi_{\beta}, \xi_{\alpha}], E] = 0$$

by the Jacobi identity. Moreover, since the distribution $\langle \xi_1, \xi_2, \xi_3 \rangle$ is integrable and each ξ_{α} is Killing, this distribution defines a Riemannian foliation of M^{4n+3} , which can be described, at least locally, by a family of Riemannian submersions. Note that $\tilde{\nabla}$ can be interpreted as the lift of the Levi-Civita connection of the space of leaves. If X, Y are (local) basic vector fields with respect to such a given submersion, then

$$\tilde{R}_{X\xi_{\alpha}}Y = \tilde{\nabla}_{X}\tilde{\nabla}_{\xi_{\alpha}}Y - \tilde{\nabla}_{\xi_{\alpha}}\tilde{\nabla}_{X}Y - \tilde{\nabla}_{[X,\xi_{\alpha}]}Y = \tilde{\nabla}_{X}[\xi_{\alpha},Y] - [\xi_{\alpha},\tilde{\nabla}_{X}Y] - \tilde{\nabla}_{[X,\xi_{\alpha}]}Y = 0,$$

since $[\xi_{\alpha}, Y] = [\xi_{\alpha}, \tilde{\nabla}_X Y] = [X, \xi_{\alpha}] = 0$ because, as *X*, *Y* and $\tilde{\nabla}_X Y$ are basic, these brackets are vertical and, by Lemma 3.2, also horizontal, hence they vanish. It remains to prove (9). We have

$$\begin{split} \tilde{R}_{XY}Z &= (\nabla_X \tilde{\nabla}_Y Z)^h - (\nabla_Y \tilde{\nabla}_X Z)^h - \tilde{\nabla}_{[X,Y]^h} Z - \tilde{\nabla}_{\sum\limits_{\alpha=1}^3 \eta_\alpha([X,Y])\xi_\alpha} Z \\ &= \left(\nabla_X \left(\nabla_Y Z - \sum\limits_{\alpha=1}^3 \eta_\alpha(\nabla_Y Z)\xi_\alpha \right) \right)^h - \left(\nabla_Y \left(\nabla_X Z - \sum\limits_{\alpha=1}^3 \eta_\alpha(\nabla_X Z)\xi_\alpha \right) \right)^h \\ &- (\nabla_{[X,Y]^h} Z)^h - \sum\limits_{\alpha=1}^3 \eta_\alpha([X,Y])[\xi_\alpha, Z] \\ &= (R_{XY}Z)^h + \sum\limits_{\alpha=1}^3 (\eta_\alpha(\nabla_Y Z)\phi_\alpha X - \eta_\alpha(\nabla_X Z)\phi_\alpha Y) \end{split}$$

from which (9) follows.

We will now show that the Ricci curvature of every 3-cosymplectic manifold vanishes. This result is a consequence of the projectability of 3-cosymplectic manifolds onto hyper-Kählerian manifolds which is stated in the following theorem.

Theorem 3.8. Every regular 3-cosymplectic structure projects onto a hyper-Kählerian structure.

Proof. Since the foliation \mathcal{F}_3 is regular, it is defined by a global submersion f from M^{4n+3} to the space of leaves $M'^{4n} = M^{4n+3}/\mathcal{F}_3$. Then the Riemannian metric g projects to a Riemannian metric G on M'^{4n} because each ξ_{α} is Killing. Moreover, by (6), the tensor fields ϕ_1 , ϕ_2 , ϕ_3 project to three tensor fields J_1 , J_2 , J_3 on M'^{4n} and it is easy to check that $J_{\alpha}J_{\beta} = \sum_{\gamma=1}^{3} \epsilon_{\alpha\beta\gamma}J_{\gamma} - \delta_{\alpha\beta}I$. In fact (J_{α}, G) are Hermitian structures which are integrable because $N_{\alpha} = 0$.

Remark 3.9. Without the assumption of the regularity, Theorem 3.8 still holds, but *locally*, in the sense that there exists a family of submersions f_i from open subsets U_i of M^{4n+3} to a 4*n*-dimensional manifold M'^{4n} , with $\{U_i\}_{i \in I}$ an open covering of M^{4n+3} , such that the 3-cosymplectic structure ($\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g$) projects under f_i to a hyper-Kählerian structure on M'^{4n} .

Corollary 3.10. Every 3-cosymplectic manifold is Ricci-flat.

Proof. According to Remark 3.9, let f_i be a local submersion from the 3-cosymplectic manifold M^{4n+3} to the hyper-Kählerian manifold M'^{4n} . Since f_i is a Riemannian submersion, we can apply a well-known formula which relates the Ricci tensors and, M^{4n+3} and M'^{4n} (cf. [7]): for any X, Y basic vector fields

$$\operatorname{Ric}(X,Y) = \operatorname{Ric}'(f_{i_*}X, f_{i_*}Y) + \frac{1}{2}(g(\nabla_X N, Y) + g(\nabla_Y N, X)) - 2\sum_{i=1}^n g(A_X X_i, A_Y X_i) - \sum_{\alpha=1}^3 g(T_{\xi_\alpha} X, T_{\xi_\beta} Y),$$
(10)

where $\{X_1, \ldots, X_{4n}, \xi_1, \xi_2, \xi_3\}$ is a local orthonormal basis with each X_i basic, A and T are the O'Neill tensors associated with f_i , and N is the local vector field on M^{4n+3} given by $N = \sum_{\alpha=1}^{3} T_{\xi_\alpha} \xi_\alpha$. Note that, since the horizontal distribution is integrable, $A \equiv 0$, and by $\nabla \xi_\alpha = 0$ we get $T_{\xi_\alpha} \xi_\alpha = (\nabla_{\xi_\alpha} \xi_\alpha)^h = 0$, $T_{\xi_\alpha} Z = (\nabla_{\xi_\alpha} Z)^v =$ $(\nabla_Z \xi_\alpha + [\xi_\alpha, Z])^v = 0$. Hence the formula (10) reduces to

$$\operatorname{Ric}(X, Y) = \operatorname{Ric}'(f_{i_*}X, f_{i_*}Y).$$

But $\operatorname{Ric}'(X', Y') = 0$ for all $X', Y' \in \Gamma(TM)$, because M'^{4n} is hyper-Kählerian. Hence $\operatorname{Ric} = 0$ in the horizontal subbundle \mathcal{H} . Finally, it is easy to check that $\operatorname{Ric}(\xi_{\alpha}, \xi_{\beta}) = 0$ and $\operatorname{Ric}(X, \xi_{\beta}) = 0$ for any $X \in \Gamma(\mathcal{H})$.

4. The Darboux theorem

Let M^{4n+3} be a manifold endowed with an almost contact metric 3-structure $(\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$. We denote by $\Phi_{\alpha}^{\flat}: X \mapsto \Phi_{\alpha}(X, \cdot)$ the musical isomorphisms induced by the fundamental 2-forms Φ_{α} between horizontal vector fields and vertical 1-forms. Their inverses will be denoted by Φ_{α}^{\sharp} . We also denote by $g_{\mathcal{H}}^{\flat}$ the musical isomorphisms induced by the metric between horizontal vector fields and vertical 1-forms, and by $\phi_{\alpha}^{\mathcal{H}}: \mathcal{H} \to \mathcal{H}$ the isomorphisms induced by the endomorphisms $\phi_{\alpha}: TM \to TM$.

Lemma 4.1. In any almost 3-contact metric manifold, the following formulas hold, for each $\alpha \in \{1, 2, 3\}$,

$$g_{\mathcal{H}}^{\flat} = \varPhi_{\alpha}^{\flat} \circ \phi_{\alpha}^{\mathcal{H}}, \qquad \phi_{\alpha}^{\mathcal{H}} = -\frac{1}{2} \sum_{\beta, \gamma = 1}^{3} \epsilon_{\alpha\beta\gamma} \varPhi_{\beta}^{\sharp} \circ \varPhi_{\gamma}^{\flat}.$$
(11)

Proof. From $\Phi_{\alpha}(X, Y) = g(X, \phi_{\alpha}Y)$ we have $-\Phi_{\alpha}^{\flat} = g_{\mathcal{H}}^{\flat} \circ \phi_{\alpha}^{\mathcal{H}}$. It follows that

$$g_{\mathcal{H}}^{\flat} = \Phi_{\alpha}^{\flat} \circ \phi_{\alpha}^{\mathcal{H}}, \tag{12}$$

since $\phi_{\alpha}^2 X = -X + \eta_{\alpha}(X)\xi_{\alpha} = -X$ for every $X \in \Gamma(\mathcal{H})$. We now prove the second formula of (11). Since the equation (12) holds for each $\alpha \in \{1, 2, 3\}$, we get

$$\phi_{\beta}^{\mathcal{H}} \circ \phi_{\gamma}^{\mathcal{H}} = -\Phi_{\beta}^{\sharp} \circ \Phi_{\gamma}^{\flat}, \tag{13}$$

for each $\beta, \gamma \in \{1, 2, 3\}$. Moreover, in view of (2), we have $\phi_{\beta}^{\mathcal{H}} \circ \phi_{\gamma}^{\mathcal{H}} = \sum_{\alpha=1}^{3} \epsilon_{\alpha\beta\gamma} \phi_{\alpha}^{\mathcal{H}}$. Thus we obtain $\sum_{\alpha=1}^{3} \epsilon_{\alpha\beta\gamma} \phi_{\alpha}^{\mathcal{H}} = -\Phi_{\beta}^{\sharp} \circ \Phi_{\gamma}^{\flat}$, that is $2\phi_{\alpha}^{\mathcal{H}} = -\sum_{\beta,\gamma=1}^{3} \epsilon_{\alpha\beta\gamma} \Phi_{\beta}^{\sharp} \circ \Phi_{\gamma}^{\flat}$.

Corollary 4.2. In any almost 3-contact metric manifold, the following formula holds in the horizontal subbundle \mathcal{H} , $g_{\mathcal{H}}^{\flat} = -\Phi_1^{\flat} \circ \Phi_2^{\sharp} \circ \Phi_3^{\flat}.$

Proof. From the two equalities in (11) we obtain

$$g_{\mathcal{H}}^{\flat} = -\frac{1}{2} \Phi_1^{\flat} \circ (\Phi_2^{\sharp} \circ \Phi_3^{\flat} - \Phi_3^{\sharp} \circ \Phi_2^{\flat}).$$

On the other hand, from (13) and (2) we obtain $\Phi_2^{\flat} \circ \phi_3^{\mathcal{H}} = -\Phi_3^{\flat} \circ \phi_2^{\mathcal{H}}$. The claim follows.

Now we prove that a 3-Sasakian manifold cannot admit any Darboux-like coordinate system. Here for "Darboux-like coordinate system" we mean local coordinates $\{x_1, \ldots, x_{4n}, z_1, z_2, z_3\}$ with respect to which, for each $\alpha \in \{1, 2, 3\}$, the fundamental 2-forms $\Phi_{\alpha} = d\eta_{\alpha}$ have constant components and $\xi_{\alpha} = a_{\alpha}^1 \frac{\partial}{\partial z_1} + a_{\alpha}^2 \frac{\partial}{\partial z_2} + a_{\alpha}^3 \frac{\partial}{\partial z_3}, a_{\alpha}^{\beta}$ being functions depending only on the coordinates z_1, z_2, z_3 . This is a natural generalisation of the standard Darboux coordinates for contact manifolds.

Theorem 4.3. Let $(M^{4n+3}, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be a 3-Sasakian manifold. Then M^{4n+3} does not admit any Darboux-like coordinate system.

Proof. Let *p* be a point of M^{4n+3} . Then in view of Theorem 2.1 there exist an open neighbourhood *U* of *p* and a (local) Riemannian submersion *f* with connected fibres from *U* onto a quaternionic Kählerian manifold M'^{4n} , such that ker $(f_*) = \langle \xi_1, \xi_2, \xi_3 \rangle$. Note that the horizontal vectors with respect to *f* are just the vectors belonging to \mathcal{H} , i.e. those orthogonal to ξ_1, ξ_2, ξ_3 . Now, suppose by contradiction that about the point *p* there exists a Darboux coordinate system, that is an open neighbourhood *V* with local coordinates $\{x_1, \ldots, x_{4n}, z_1, z_2, z_3\}$ as above. We can assume that U = V. We decompose each vector field $\frac{\partial}{\partial x_i}$ into its horizontal and vertical components, $\frac{\partial}{\partial x_i} = X_i + \sum_{\alpha=1}^3 \eta_\alpha(\frac{\partial}{\partial x_i})\xi_\alpha$. Note that

$$\eta_{\alpha}\left(\frac{\partial}{\partial x_{i}}\right) = \frac{1}{2} \sum_{\beta,\gamma=1}^{3} \epsilon_{\alpha\beta\gamma} g\left(\frac{\partial}{\partial x_{i}}, \phi_{\beta}\xi_{\gamma}\right) = \frac{1}{2} \sum_{\beta,\gamma=1}^{3} \epsilon_{\alpha\beta\gamma} d\eta_{\beta}\left(\frac{\partial}{\partial x_{i}}, \xi_{\gamma}\right)$$
$$= \frac{1}{2} \sum_{\beta,\gamma,\delta=1}^{3} \epsilon_{\alpha\beta\gamma} a_{\gamma}^{\delta} d\eta_{\beta}\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial z_{\delta}}\right), \tag{14}$$

so that $\eta_{\alpha}(\frac{\partial}{\partial x_i})$ are functions which do not depend on the coordinates x_i . Consequently, the only eventually non-constant components of each horizontal vector field $X_i = \frac{\partial}{\partial x_i} - \sum_{\alpha=1}^3 \eta_{\alpha}(\frac{\partial}{\partial x_i})\xi_{\alpha}$ in the holonomic basis $(\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_{4\eta}}, \frac{\partial}{\partial z_2}, \frac{\partial}{\partial z_2}, \frac{\partial}{\partial z_3})$ depend at most on the coordinates z_1, z_2, z_3 . Actually, for each $i \in \{1, \ldots, 4n\}$, X_i is a basic vector field with respect to the submersion f, thus its components do not depend even on the fibre coordinates z_{α} , hence they are constant. For proving this it is sufficient to show that, for each $\alpha \in \{1, 2, 3\}$, $[X_i, \xi_{\alpha}]$ is vertical. Indeed,

$$[X_i,\xi_{\alpha}] = \sum_{\beta=1}^{3} \frac{\partial a_{\alpha}^{\beta}}{\partial x_i} \frac{\partial}{\partial z_{\beta}} + \sum_{\beta=1}^{3} \left[\eta_{\beta} \left(\frac{\partial}{\partial x_i} \right) \xi_{\beta}, \xi_{\alpha} \right] = \sum_{\beta=1}^{3} \left[\eta_{\beta} \left(\frac{\partial}{\partial x_i} \right) \xi_{\beta}, \xi_{\alpha} \right]$$

because the functions a_{α}^{β} do not depend on the coordinates x_i . Then by Corollary 4.2

$$g(X_i, X_j) = -(d\eta_1^{\flat} \circ d\eta_2^{\sharp} \circ d\eta_3^{\flat})(X_i)(X_j)$$

$$\tag{15}$$

and so the functions $g(X_i, X_j)$ are constant since each X_i has constant components and the 2-forms $d\eta_{\alpha}$ are assumed to have constant components, too. The next step is to note that, for all $i, j \in \{1, ..., 4n\}$, the brackets $[X_i, X_j]$ are vertical vector fields. We have, by (14),

$$\begin{split} [X_i, X_j] &= \left[\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}\right] + \sum_{\alpha, \beta=1}^3 \left[\eta_\alpha \left(\frac{\partial}{\partial x_i}\right) \xi_\alpha, \eta_\beta \left(\frac{\partial}{\partial x_j}\right) \xi_\beta\right] \\ &- \sum_{\alpha=1}^3 \left[\eta_\alpha \left(\frac{\partial}{\partial x_i}\right) \xi_\alpha, \frac{\partial}{\partial x_j}\right] - \sum_{\beta=1}^3 \left[\frac{\partial}{\partial x_i}, \eta_\beta \left(\frac{\partial}{\partial x_j}\right) \xi_\beta\right] \\ &= 2 \sum_{\alpha, \beta, \gamma=1}^3 \eta_\alpha \left(\frac{\partial}{\partial x_i}\right) \eta_\beta \left(\frac{\partial}{\partial x_j}\right) \epsilon_{\alpha\beta\gamma} \xi_\gamma. \end{split}$$

Then, for all $i, j, k \in \{1, ..., 4n\}$, using (7) and the Koszul formula for the Levi-Civita covariant derivative we obtain

$$2g(\nabla_{X_i}X_j, X_k) = 2g(\nabla_{X_i}X_j, X_k) = X_i(g(X_j, X_k)) + X_j(g(X_k, X_i)) - X_k(g(X_i, X_j)) - g([X_j, X_k], X_i) + g([X_k, X_i], X_j) + g([X_i, X_j], X_k) = 0,$$

so that $\tilde{\nabla}_{X_i} X_j = 0$. But $\tilde{\nabla}$ projects locally to the Levi-Civita connection ∇' of the quaternionic Kählerian manifold M'^{4n} under the Riemannian submersion f so that in particular we would have that ∇' is flat and this cannot happen because the scalar curvature of M'^{4n} , by Theorem 2.1, must be strictly positive.

Now we prove a Darboux theorem for 3-cosymplectic manifolds.

Theorem 4.4. Around each point of a flat 3-cosymplectic manifold M^{4n+3} there are local coordinates $\{x_1, \ldots, x_n, y_1, \ldots, y_n, u_1, \ldots, u_n, v_1, \ldots, v_n, z_1, z_2, z_3\}$ such that, for each $\alpha \in \{1, 2, 3\}$, $\eta_{\alpha} = dz_{\alpha}$, $\xi_{\alpha} = \frac{\partial}{\partial z_{\alpha}}$ and, moreover,

$$\Phi_1 = 2\sum_{i=1}^n (dx_i \wedge dy_i + du_i \wedge dv_i) - 2dz_2 \wedge dz_3,$$
(16)

$$\Phi_2 = 2\sum_{i=1}^n (dx_i \wedge du_i - dy_i \wedge dv_i) + 2dz_1 \wedge dz_3,$$
(17)

$$\Phi_3 = 2\sum_{i=1}^n (dx_i \wedge dv_i + dy_i \wedge du_i) - 2dz_1 \wedge dz_2,$$
(18)

 ϕ_1 , ϕ_2 and ϕ_3 are represented, respectively, by the $(4n + 3) \times (4n + 3)$ -matrices

Proof. Let *p* be a point of M^{4n+3} . Since M^{4n+3} is flat there exists a neighbourhood *U* of *p* where the curvature tensor field vanishes identically. Moreover, one can prove by some linear algebra that there exist horizontal vectors e_1, \ldots, e_n such that $\{e_1, \ldots, e_n, \phi_1e_1, \ldots, \phi_1e_n, \phi_2e_1, \ldots, \phi_2e_n, \phi_3e_1, \ldots, \phi_3e_n, \xi_{1_p}, \xi_{2_p}, \xi_{3_p}\}$ is an orthonormal basis of T_pM satisfying the equalities

$\Phi_1(e_i,\phi_1e_j)=\delta_{ij},$	$\Phi_1(\phi_2 e_i, \phi_3 e_j) = \delta_{ij},$	$\Phi_1(\xi_{2_p},\xi_{3_p})=-1,$
$\Phi_2(e_i,\phi_2e_j)=\delta_{ij},$	$\Phi_2(\phi_1 e_i, \phi_3 e_i) = -\delta_{ij},$	$\Phi_2(\xi_{1_p},\xi_{3_p})=1,$
$\Phi_3(e_i,\phi_3e_j)=\delta_{ij},$	$\Phi_3(\phi_1 e_i, \phi_2 e_j) = \delta_{ij},$	$\Phi_3(\xi_{1_p},\xi_{2_p})=-1,$

fields X_i , Y_i , U_i , V_i on U by parallel transport of the vectors e_i , $\phi_1 e_i$, $\phi_2 e_i$, $\phi_3 e_i$, $i \in \{1, ..., n\}$. Note that the definition is well-posed because the parallel transport does not depend on the curve. Since the Levi-Civita connection is a metric connection and since $\nabla \xi_{\alpha} = 0$ we have that $\{X_1, ..., X_n, Y_1, ..., Y_n, U_1, ..., U_n, V_1, ..., V_n, \xi_1, \xi_2, \xi_3\}$ is an orthonormal frame on U. Moreover by $\nabla \phi_{\alpha} = 0$ we get that

$$Y_i = \phi_1 X_i, \qquad U_i = \phi_2 X_i, \qquad V_i = \phi_3 X_i,$$
 (22)

and by $\nabla \Phi_{\alpha} = 0$ we have

$$\Phi_1(X_i, Y_j) = \delta_{ij}, \qquad \Phi_1(U_i, V_j) = \delta_{ij}, \qquad \Phi_1(\xi_2, \xi_3) = -1,$$
(23)

$$\Phi_2(X_i, U_j) = \delta_{ij}, \qquad \Phi_2(Y_i, V_j) = -\delta_{ij}, \qquad \Phi_2(\xi_1, \xi_3) = 1,$$
(24)

$$\Phi_3(X_i, V_j) = \delta_{ij}, \qquad \Phi_3(Y_i, U_j) = \delta_{ij}, \qquad \Phi_3(\xi_1, \xi_2) = -1,$$
(25)

and the values of the 2-forms Φ_{α} on all the other pairs of vector fields belonging to the orthonormal frame vanish. Since the vector fields X_i , Y_i , U_i , V_i are, by construction, ∇ -parallel we have that the bracket of each pair of these vector fields vanishes identically. This, together with (4) and the vanishing of the brackets $[X_i, \xi_{\alpha}], [Y_i, \xi_{\alpha}], [U_i, \xi_{\alpha}]$ and $[V_i, \xi_{\alpha}]$ implies the existence of local coordinates $\{x_1, \ldots, x_n, y_1, \ldots, y_n, u_1, \ldots, u_n, v_1, \ldots, v_n, z_1, z_2, z_3\}$ with respect to which

$$X_{i} = \frac{\partial}{\partial x_{i}}, \qquad Y_{i} = \frac{\partial}{\partial y_{i}}, \qquad U_{i} = \frac{\partial}{\partial u_{i}}, \qquad V_{i} = \frac{\partial}{\partial v_{i}},$$

$$\xi_{1} = \frac{\partial}{\partial z_{1}}, \qquad \xi_{2} = \frac{\partial}{\partial z_{2}}, \qquad \xi_{3} = \frac{\partial}{\partial z_{3}}.$$

Now, as the 1-forms η_{α} are closed, they are locally exact, and we have (eventually reducing U) $\eta_{\alpha} = df_{\alpha}$ for some functions $f_{\alpha} \in C^{\infty}(U)$, and from the relations $\eta_{\alpha}(X_i) = \eta_{\alpha}(Y_i) = \eta_{\alpha}(U_i) = \eta_{\alpha}(V_i) = 0$, $\eta_{\alpha}(\xi_{\beta}) = \delta_{\alpha\beta}$ it follows that $\frac{\partial f_{\alpha}}{\partial x_i} = \frac{\partial f_{\alpha}}{\partial y_i} = \frac{\partial f_{\alpha}}{\partial u_i} = 0$, $\frac{\partial f_{\alpha}}{\partial z_{\beta}} = \delta_{\alpha\beta}$. Hence, for each $\alpha \in \{1, 2, 3\}$, $\eta_{\alpha} = dz_{\alpha}$. Next, by (23)–(25), we get (16)–(18). Finally, by (22) and by $\phi_{\alpha}\xi_{\beta} = \sum_{\gamma=1}^{3} \epsilon_{\alpha\beta\gamma}\xi_{\gamma}$ we deduce that with respect to this coordinate system ϕ_1, ϕ_2 and ϕ_3 are represented by the matrices (19)–(21), respectively.

Arguing as in Theorem 4.3 and taking into account that the "vertical" terms $R_{\xi_{\alpha}\xi_{\beta}}$ and the "mixed" terms $R_{X\xi_{\alpha}}$ of the curvature tensor (with $X \in \Gamma(\mathcal{H})$) vanish, one can prove the converse of Theorem 4.4:

Proposition 4.5. Let $(M^{4n+3}, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be a 3-cosymplectic manifold. If each point of M^{4n+3} admits a Darboux coordinate system such that (16)–(18) of Theorem 4.4 hold, then M^{4n+3} is flat.

Remark 4.6. We conclude noting that in any almost 3-contact metric manifold $(M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ (and in particular in any hyper-contact manifold (cf. [3])) the metric g is uniquely determined by the three fundamental 2-forms Φ_{α} and the three Reeb vector fields ξ_{α} . In particular, in the case of 3-Sasakian manifolds the metric is uniquely determined by the three contact forms η_{α} . Indeed, on the one hand, it follows from Corollary 4.2 that

$$g(X,Y) = -(d\eta_1^{\flat} \circ d\eta_2^{\sharp} \circ d\eta_3^{\flat}(X))(Y),$$

for any $X, Y \in \Gamma(\mathcal{H})$. On the other hand, we have $g(\xi_{\alpha}, \xi_{\beta}) = \delta_{\alpha\beta}$ and $g(X, \xi_{\alpha}) = \eta_{\alpha}(X) = 0$. This remark gives an answer to the open problem raised by Banyaga in the Remark 11 of [3].

Acknowledgement

The authors wish to thank Prof. A.M. Pastore for the helpful suggestions during the preparation of the paper.

References

- B.S. Acharya, J.M. Figueroa-O'Farrill, C.M. Hull, B.J. Spence, Branes at conical singularities and holography, Adv. Theor. Math. Phys. 2 (1999) 1249–1286.
- [2] I. Agricola, T. Friedrich, Killing spinors in supergravity with 4-fluxes, Classical Quantum Gravity 20 (2003) 4707–4717.

- [3] A. Banyaga, Instantons and hypercontact structures, J. Geom. Phys. 19 (1996) 267-276.
- [4] D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Birkhäuser, Boston, 2002.
- [5] C.P. Boyer, K. Galicki, B.M. Mann, The geometry and the topology of 3-Sasakian manifolds, J. Reine Angew. Math. 455 (1994) 183-220.
- [6] C.P. Boyer, K. Galicki, 3-Sasakian manifolds, in: M. Wang, C. Lebrun (Eds.), Essays on Einstein Manifolds, in: Surveys Diff. Geom., vol. VI, International Press, Cambridge, 1999, pp. 123–184.
- [7] M. Falcitelli, S. Ianus, A.M. Pastore, Riemannian Submersions and Related Topics, World Scientific, Singapore, 2004.
- [8] G.W. Gibbons, P. Rychenkova, Cones, tri-Sasakian structures and superconformal invariance, Phys. Lett. B 443 (1998) 138-142.
- [9] S. Ishihara, Quaternion K\u00e4hlerian manifolds and fibred Riemannian spaces with Sasakian 3-structure, Kodai Math. Sem. Rep. 25 (1973) 321–329.
- [10] D. Janssens, L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981) 1–27.
- [11] T. Kashiwada, On a contact 3-structure, Math. Z. 238 (2001) 829-832.
- [12] T. Kashiwada, F. Martin Cabrera, M.M. Tripathi, Non-existence of certain 3-structures, Rocky Mountain J. Math. 35 (2005) 1953–1979.
- [13] Y.Y. Kuo, On almost 3-structure, Tôhoku Math. J. 22 (1970) 325–332.
- [14] F. Martín Cabrera, Almost hyper-Hermitian structures in bundle spaces over manifolds with almost contact 3-structure, Czechoslovak Math. J. 48 (1998) 545–563.
- [15] S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. 314 (1) (1989) 349–379.
- [16] T. Tshikuna-Matamba, Geometric properties of almost contact metric 3-submersions, Period. Math. Hungar. 52 (2006) 101–119.
- [17] C. Udriste, Structures presque coquaternioniennes, Bull. Math. Soc. Sci. Math. R. S. Roumanie 13 (1969) 487–507.