3-Sasakian manifolds, 3-cosymplectic manifolds and Darboux theorem

Beniamino Cappelletti Montano*, Antonio De Nicola
Department of Mathematics, University of Bari, Via E. Orabona 4, I-70125 Bari, Italy

Received 27 November 2006; received in revised form 11 September 2007; accepted 11 September 2007
Available online 20 September 2007
Dedicated to the memory of Giulio Minervini on the anniversary of his departure.

Abstract

We present a compared analysis of some properties of 3-Sasakian and 3-cosymplectic manifolds. We construct a canonical connection on an almost 3-contact metric manifold which generalises the Tanaka-Webster connection of a contact metric manifold and we use this connection to show that a 3-Sasakian manifold does not admit any Darboux-like coordinate system. Moreover, we prove that any 3-cosymplectic manifold is Ricci-flat and admits a Darboux coordinate system if and only if it is flat.

(C) 2007 Elsevier B.V. All rights reserved.

MSC: 53C15; 53C25; 53B05; 53D15
Keywords: Darboux theorem; Almost contact metric 3-structures; 3-Sasakian manifolds; 3-cosymplectic manifolds; Hyper-cosymplectic manifolds; Generalised Tanaka-Webster connection

1. Introduction

Both 3-Sasakian and 3-cosymplectic manifolds belong to the class of almost contact (metric) 3-structures, introduced by Kuo [13] and, independently, by Udriste [17]. The study of 3-Sasakian manifolds has been conducted by several authors (see for example [5,6] and references therein) due to the increasing awareness of their importance in mathematics and in physics, together with the closely linked hyper-Kählerian and quaternionic Kählerian manifolds. Recently they have made an appearance also in supergravity and M-theory (see [1,2,8]). Less studied, so far, are the 3 -cosymplectic manifolds, also called hyper-cosymplectic, but we can list some recent publications [7,12,14,16]. For example, Kashiwada and his collaborators proved in [12] that any b-Kenmotsu (see [4,10]) almost contact 3 -structure must be 3 -cosymplectic.

In this paper we present a compared analysis of some properties of 3-Sasakian and 3-cosymplectic manifolds. We start with a brief review of some known results on these classes of manifolds, contained in Section 2. In Section 3 we construct a canonical connection on an almost 3-contact metric manifold and we study its curvature and torsion

[^0]analysing also its behaviour in the special cases of 3-Sasakian and 3-cosymplectic manifolds. Our connection can be interpreted as a generalisation of the (generalised) Tanaka-Webster connection of a contact metric manifold, introduced by Tanno in [15]. The section is concluded by a further investigation of the properties of 3-cosymplectic manifolds concerning their projectability which leads us to prove that every 3 -cosymplectic manifold is Ricciflat. In the final section we analyse the possibility of finding a Darboux-like coordinate system on 3-Sasakian and 3-cosymplectic manifolds. Firstly we establish a relation which holds in any almost 3-contact metric manifold linking the horizontal part of the metric with the three fundamental forms Φ_{α}. This relation is responsible for a kind of rigidity of this class of manifolds which links the existence of Darboux coordinates to the flatness of the manifold and does not hold in the case of a single Sasakian or cosymplectic structure. In particular, on the one hand, using our canonical connection and the (local) projection of a 3-Sasakian manifold over a quaternionic Kählerian manifold (see [5,9]), we show that 3-Sasakian manifolds, unlike the Sasakian ones, do not admit any Darboux-like coordinate system. This result is related to the fact that 3 -Sasakian manifolds are not (horizontally) flat. On the other hand, we show that a 3-cosymplectic manifold admits a Darboux coordinate system in the neighbourhood of each point if and only if its metric is flat.

2. Preliminaries

An almost contact manifold is an odd-dimensional manifold M which carries a field ϕ of endomorphisms of the tangent spaces, a vector field ξ, called characteristic or Reeb vector field, and a 1-form η satisfying $\phi^{2}=-I+\eta \otimes \xi$ and $\eta(\xi)=1$, where $I: T M \rightarrow T M$ is the identity mapping. From the definition it follows also that $\phi \xi=0, \eta \circ \phi=0$ and that the (1,1)-tensor field ϕ has constant rank $2 n$ (cf. [4]). An almost contact manifold (M, ϕ, ξ, η) is said to be normal when the tensor field $N=[\phi, \phi]+2 d \eta \otimes \xi$ vanishes identically, $[\phi, \phi]$ denoting the Nijenhuis tensor of ϕ. It is known that any almost contact manifold (M, ϕ, ξ, η) admits a Riemannian metric g such that

$$
\begin{equation*}
g(\phi E, \phi F)=g(E, F)-\eta(E) \eta(F) \tag{1}
\end{equation*}
$$

holds for all $E, F \in \Gamma(T M)$. This metric g is called a compatible metric and the manifold M together with the structure (ϕ, ξ, η, g) is called an almost contact metric manifold. As an immediate consequence of (1), one has $\eta=g(\cdot, \xi)$. The 2-form Φ on M defined by $\Phi(E, F)=g(E, \phi F)$ is called the fundamental 2-form of the almost contact metric manifold M. Almost contact metric manifolds such that both η and Φ are closed are called almost cosymplectic manifolds and almost contact metric manifolds such that $d \eta=\Phi$ are called contact metric manifolds. Finally, a normal almost cosymplectic manifold is called a cosymplectic manifold and a normal contact metric manifold is said to be a Sasakian manifold. In terms of the covariant derivative of ϕ the cosymplectic and the Sasakian conditions can be expressed respectively by

$$
\nabla \phi=0
$$

and

$$
\left(\nabla_{E} \phi\right) F=g(E, F) \xi-\eta(F) E
$$

for all $E, F \in \Gamma(T M)$. It should be noted that both in Sasakian and in cosymplectic manifolds ξ is a Killing vector field.

An almost 3-contact manifold is a $(4 n+3)$-dimensional smooth manifold M endowed with three almost contact structures $\left(\phi_{1}, \xi_{1}, \eta_{1}\right),\left(\phi_{2}, \xi_{2}, \eta_{2}\right),\left(\phi_{3}, \xi_{3}, \eta_{3}\right)$ satisfying the following relations, for every $\alpha, \beta \in\{1,2,3\}$,

$$
\begin{equation*}
\phi_{\alpha} \phi_{\beta}-\eta_{\beta} \otimes \xi_{\alpha}=\sum_{\gamma=1}^{3} \epsilon_{\alpha \beta \gamma} \phi_{\gamma}-\delta_{\alpha \beta} I, \quad \phi_{\alpha} \xi_{\beta}=\sum_{\gamma=1}^{3} \epsilon_{\alpha \beta \gamma} \xi_{\gamma}, \quad \eta_{\alpha} \circ \phi_{\beta}=\sum_{\gamma=1}^{3} \epsilon_{\alpha \beta \gamma} \eta_{\gamma} \tag{2}
\end{equation*}
$$

where $\epsilon_{\alpha \beta \gamma}$ is the totally antisymmetric symbol. This notion was introduced by Kuo [13] and, independently, by Udriste [17]. In [13] Kuo proved that given an almost contact 3 -structure ($\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}$), there exists a Riemannian metric g compatible with each of them and hence we can speak of almost contact metric 3 -structures. It is wellknown that in any almost 3 -contact metric manifold the Reeb vector fields $\xi_{1}, \xi_{2}, \xi_{3}$ are orthonormal with respect to the compatible metric g and that the structural group of the tangent bundle is reducible to $\operatorname{Sp}(n) \times I_{3}$. Moreover, by putting $\mathcal{H}=\bigcap_{\alpha=1}^{3} \operatorname{ker}\left(\eta_{\alpha}\right)$ one obtains a $4 n$-dimensional distribution on M and the tangent bundle splits as the
orthogonal sum $T M=\mathcal{H} \oplus\left\langle\xi_{1}, \xi_{2}, \xi_{3}\right\rangle$. For a reason which will be clearer later we call any vector belonging to the distribution \mathcal{H} "horizontal" and any vector belonging to the distribution $\left\langle\xi_{1}, \xi_{2}, \xi_{3}\right\rangle$ "vertical". An almost 3 -contact manifold M is said to be hyper-normal if each almost contact structure ($\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}$) is normal.

When the three structures ($\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g$) are contact metric structures, we say that M is a 3-contact metric manifold and when they are Sasakian, that is when each structure $\left(\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}\right)$ is also normal, we call M a 3-Sasakian manifold. However these two notions coincide. Indeed as it has been proved in 2001 by Kashiwada [11], every contact metric 3 -structure is 3-Sasakian. In any 3-Sasakian manifold we have that, for each $\alpha \in\{1,2,3\}$,

$$
\begin{equation*}
\phi_{\alpha}=-\nabla \xi_{\alpha} . \tag{3}
\end{equation*}
$$

Using this, one obtains that $\left[\xi_{1}, \xi_{2}\right]=2 \xi_{3},\left[\xi_{2}, \xi_{3}\right]=2 \xi_{1},\left[\xi_{3}, \xi_{1}\right]=2 \xi_{2}$. In particular, the vertical distribution $\left\langle\xi_{1}, \xi_{2}, \xi_{3}\right\rangle$ is integrable and defines a 3 -dimensional foliation of M denoted by \mathcal{F}_{3}. Since $\xi_{1}, \xi_{2}, \xi_{3}$ are Killing vector fields, \mathcal{F}_{3} is a Riemannian foliation. Moreover it has totally geodesic leaves of constant curvature 1. On the contrary, in a 3-Sasakian manifold the horizontal distribution \mathcal{H} is never integrable. About the foliation \mathcal{F}_{3}, Ishihara [9] has shown that if \mathcal{F}_{3} is regular then the space of leaves is a quaternionic Kählerian manifold. Boyer, Galicki and Mann have proved the following more general result.

Theorem 2.1 ([5]). Let $\left(M^{4 n+3}, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g\right)$ be a 3-Sasakian manifold such that the Killing vector fields $\xi_{1}, \xi_{2}, \xi_{3}$ are complete. Then
(i) $M^{4 n+3}$ is an Einstein manifold of positive scalar curvature equal to $2(2 n+1)(4 n+3)$.
(ii) Each leaf \mathcal{L} of the foliation \mathcal{F}_{3} is a 3-dimensional homogeneous spherical space form.
(iii) The space of leaves $M^{4 n+3} / \mathcal{F}$ is a quaternionic Kählerian orbifold of dimension $4 n$ with positive scalar curvature equal to $16 n(n+2)$.

By an almost 3-cosymplectic manifold we mean an almost 3-contact metric manifold M such that each almost contact metric structure ($\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g$) is almost cosymplectic. The almost 3-cosymplectic structure ($\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g$) is called 3-cosymplectic if it is hyper-normal. In this case M is said to be a 3-cosymplectic manifold. However it has been proved recently that these two notions are the same:

Theorem 2.2 ([7, Theorem 4.13]). Any almost 3-cosymplectic manifold is 3-cosymplectic.
In any 3 -cosymplectic manifold we have that $\xi_{\alpha}, \eta_{\alpha}, \phi_{\alpha}$ and Φ_{α} are ∇-parallel. In particular

$$
\begin{equation*}
\left[\xi_{\alpha}, \xi_{\beta}\right]=\nabla_{\xi_{\alpha}} \xi_{\beta}-\nabla_{\xi_{\beta}} \xi_{\alpha}=0 \tag{4}
\end{equation*}
$$

for all $\alpha, \beta \in\{1,2,3\}$, so that, as in any 3-Sasakian manifold, $\left\langle\xi_{1}, \xi_{2}, \xi_{3}\right\rangle$ defines a 3-dimensional foliation \mathcal{F}_{3} of $M^{4 n+3}$. However, unlike the case of 3-Sasakian geometry, the horizontal subbundle \mathcal{H} of a 3-cosymplectic manifold is integrable because, for all $X, Y \in \Gamma(\mathcal{H}), \eta_{\alpha}([X, Y])=-2 d \eta_{\alpha}(X, Y)=0$ since $d \eta_{\alpha}=0$.

3. Further properties of 3-Sasakian and 3-cosymplectic manifolds

In this section we investigate on further properties of 3-Sasakian and 3-cosymplectic manifolds. We start with the following preliminary result.

Lemma 3.1. Let $\left(M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g\right)$ be an almost 3-contact metric manifold. Then if M is 3-Sasakian we have, for each $\alpha, \beta \in\{1,2,3\}$,

$$
\begin{equation*}
\mathcal{L}_{\xi_{\alpha}} \phi_{\beta}=2 \sum_{\gamma=1}^{3} \epsilon_{\alpha \beta \gamma} \phi_{\gamma}, \tag{5}
\end{equation*}
$$

and if M is 3-cosymplectic,

$$
\begin{equation*}
\mathcal{L}_{\xi_{\alpha}} \phi_{\beta}=0 . \tag{6}
\end{equation*}
$$

Proof. For any $X \in \Gamma(\mathcal{H})$ we have, using (3),

$$
\begin{aligned}
\left(\mathcal{L}_{\xi_{2}} \phi_{1}\right) X & =\nabla_{\xi_{2}}\left(\phi_{1} X\right)-\nabla_{\phi_{1} X} \xi_{2}-\phi_{1} \nabla_{\xi_{2}} X+\phi_{1} \nabla_{X} \xi_{2} \\
& =\left(\nabla_{\xi_{2}} \phi_{1}\right) X+\phi_{2} \phi_{1} X-\phi_{1} \phi_{2} X=-2 \phi_{3} X .
\end{aligned}
$$

Moreover, we have

$$
\begin{aligned}
& \left(\mathcal{L}_{\xi_{2}} \phi_{1}\right) \xi_{1}=\left[\xi_{2}, \phi_{1} \xi_{1}\right]-\phi_{1}\left[\xi_{2}, \xi_{1}\right]=2 \phi_{1} \xi_{3}=-2 \xi_{3}=-2 \phi_{3} \xi_{1}, \\
& \left(\mathcal{L}_{\xi_{2}} \phi_{1}\right) \xi_{2}=\left[\xi_{2}, \phi_{1} \xi_{2}\right]-\phi_{1}\left[\xi_{2}, \xi_{2}\right]=\left[\xi_{2}, \xi_{3}\right]=2 \xi_{1}=-2 \phi_{3} \xi_{2}, \\
& \left(\mathcal{L}_{\xi_{2}} \phi_{1}\right) \xi_{3}=\left[\xi_{2}, \phi_{1} \xi_{3}\right]-\phi_{1}\left[\xi_{2}, \xi_{3}\right]=-\left[\xi_{2}, \xi_{2}\right]-2 \phi_{1} \xi_{1}=0=-2 \phi_{3} \xi_{3},
\end{aligned}
$$

from which we conclude that $\mathcal{L}_{\xi_{2}} \phi_{1}=-2 \phi_{3}$. Similarly one can prove $\mathcal{L}_{\xi_{3}} \phi_{1}=2 \phi_{2}$. Finally, $\mathcal{L}_{\xi_{1}} \phi_{1}=0$ holds because ($\phi_{1}, \xi_{1}, \eta_{1}, g$) is a Sasakian structure. The other equalities in (5) can be proved in an analogous way. We now prove (6). For any horizontal vector field X we have

$$
\left(\mathcal{L}_{\xi_{\alpha}} \phi_{\beta}\right) X=\nabla_{\xi_{\alpha}}\left(\phi_{\beta} X\right)-\nabla_{\phi_{\beta} X} \xi_{\alpha}-\phi_{\beta}\left(\nabla_{\xi_{\alpha}} X-\nabla_{X} \xi_{\alpha}\right)=\left(\nabla_{\xi_{\alpha}} \phi_{\beta}\right) X=0
$$

and, by using (2) and (4), $\left(\mathcal{L}_{\xi_{\alpha}} \phi_{\beta}\right) \xi_{\gamma}=\left[\xi_{\alpha}, \phi_{\beta} \xi_{\gamma}\right]-\phi_{\beta}\left[\xi_{\alpha}, \xi_{\gamma}\right]=0$.
A common property of 3-Sasakian and 3-cosymplectic manifolds is stated in the following lemma.
Lemma 3.2. Let M be a 3-Sasakian or 3-cosymplectic manifold. Then, for any horizontal vector field $X,\left[X, \xi_{\alpha}\right]$ is still horizontal.

Proof. $\eta_{\beta}\left(\left[X, \xi_{\alpha}\right]\right)=+X\left(\eta_{\beta}\left(\xi_{\alpha}\right)\right)-\xi_{\alpha}\left(\eta_{\beta}(X)\right)-2 d \eta_{\beta}\left(X, \xi_{\alpha}\right)=-2 d \eta_{\beta}\left(X, \xi_{\alpha}\right)$, for any $\beta \in\{1,2,3\}$. Now, if the structure is 3-cosymplectic $d \eta_{\beta}=0$ and if it is 3-Sasakian $d \eta_{\beta}\left(X, \xi_{\alpha}\right)=g\left(X, \phi_{\beta} \xi_{\alpha}\right)=\sum_{\gamma=1}^{3} \epsilon_{\alpha \beta \gamma} \eta_{\gamma}(X)=0$ since X is horizontal.

Now we attach a canonical connection to any manifold $M^{4 n+3}$ with an almost contact metric 3 -structure ($\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g$) in the following way. We set

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\left(\nabla_{X} Y\right)^{h}, \quad \tilde{\nabla}_{\xi_{\alpha}} Y=\left[\xi_{\alpha}, Y\right], \quad \tilde{\nabla} \xi_{\alpha}=0 \tag{7}
\end{equation*}
$$

for all $X, Y \in \Gamma(\mathcal{H})$, where $\left(\nabla_{X} Y\right)^{h}$ denotes the horizontal component of the Levi-Civita connection. In the following proposition we start the study of the properties of this connection.

Proposition 3.3. Let $\left(M^{4 n+3}, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g\right)$ be an almost 3 -contact metric manifold. Then the 1-forms $\eta_{1}, \eta_{2}, \eta_{3}$ are $\tilde{\nabla}$-parallel if and only if $d \eta_{\alpha}\left(X, \xi_{\beta}\right)=0$ for any $X \in \Gamma(\mathcal{H})$ and any $\alpha, \beta \in\{1,2,3\}$. Furthermore $\tilde{\nabla}$ is a metric connection with respect to g if and only if each ξ_{α} is Killing.
Proof. Since $\tilde{\nabla}_{X} Y \in \Gamma(\mathcal{H})$ for any $X, Y \in \Gamma(\mathcal{H})$, we have $\left(\tilde{\nabla}_{X} \eta_{\alpha}\right) Y=0$ for all $X, Y \in \Gamma(\mathcal{H})$; moreover, from $\tilde{\nabla} \xi_{\beta}=0$ and $\eta_{\alpha}\left(\xi_{\beta}\right)=\delta_{\alpha \beta}$ it follows also that $\left(\tilde{\nabla}_{E} \eta_{\alpha}\right) \xi_{\beta}=0$, for all $E \in \Gamma(T M)$ and $\alpha, \beta \in\{1,2,3\}$. So η_{α} is $\tilde{\nabla}$-parallel if and only if $\left(\tilde{\nabla}_{\xi_{\beta}} \eta_{\alpha}\right) X=0$ for all $\beta \in\{1,2,3\}$, i.e. if and only if $\eta_{\alpha}\left(\left[\xi_{\beta}, X\right]\right)=0$ and this is equivalent to requiring that $d \eta_{\alpha}\left(X, \xi_{\beta}\right)=0$. Now we prove the second part of the proposition. Firstly, we note that $\left(\mathcal{L}_{\xi_{\alpha}} g\right)\left(\xi_{\beta}, \xi_{\gamma}\right)=-g\left(\left[\xi_{\alpha}, \xi_{\beta}\right], \xi_{\gamma}\right)-g\left(\xi_{\beta},\left[\xi_{\alpha}, \xi_{\gamma}\right]\right)=-2 \sum_{\delta=1}^{3}\left(\epsilon_{\alpha \beta \delta} g\left(\xi_{\delta}, \xi_{\gamma}\right)+\epsilon_{\alpha \gamma \delta} g\left(\xi_{\beta}, \xi_{\delta}\right)\right)=$ $-2\left(\epsilon_{\alpha \beta \gamma}+\epsilon_{\alpha \gamma \beta}\right)=0$, and, by Lemma 3.2, $\left(\mathcal{L}_{\xi_{\alpha}} g\right)\left(X, \xi_{\beta}\right)=\xi_{\alpha}\left(g\left(X, \xi_{\beta}\right)\right)-g\left(\left[\xi_{\alpha}, X\right], \xi_{\beta}\right)-g\left(X, 2 \epsilon_{\alpha \beta \gamma} \xi_{\gamma}\right)=0$ for $X \in \Gamma(\mathcal{H})$. Next, we observe that for all horizontal vector fields X, Y, Z, we have

$$
\begin{aligned}
\left(\tilde{\nabla}_{Z} g\right)(X, Y) & =Z(g(X, Y))-g\left(\left(\nabla_{Z} X\right)^{h}, Y\right)-g\left(X,\left(\nabla_{Z} Y\right)^{h}\right) \\
& =Z(g(X, Y))-g\left(\nabla_{Z} X, Y\right)-g\left(X, \nabla_{Z} Y\right)=0 .
\end{aligned}
$$

Moreover, clearly, $\left(\tilde{\nabla}_{Z} g\right)\left(X, \xi_{\alpha}\right)=0$. Finally, $\left(\tilde{\nabla}_{E} g\right)\left(\xi_{\alpha}, \xi_{\beta}\right)=0$ for any $E \in \Gamma(T M)$ and any $\alpha, \beta \in\{1,2,3\}$. So g is $\tilde{\nabla}$-parallel if and only if $\left(\tilde{\nabla}_{\xi_{\alpha}} g\right)(X, Y)=0$ for any $X, Y \in \Gamma(\mathcal{H})$ and for all $\alpha \in\{1,2,3\}$. But, as $\tilde{\nabla} \xi_{\alpha}=0$, we have the equality

$$
\left(\tilde{\nabla}_{\xi_{\alpha}} g\right)(X, Y)=\xi_{\alpha}(g(X, Y))-g\left(\left[\xi_{\alpha}, X\right], Y\right)-g\left(X,\left[\xi_{\alpha}, Y\right]\right)=\left(\mathcal{L}_{\xi_{\alpha}} g\right)(X, Y)
$$

from which we get the assertion.

In general the canonical connection $\tilde{\nabla}$ is not torsion free. Indeed we have the following result.
Proposition 3.4. Let $\left(M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g\right)$ be an almost 3 -contact metric manifold. Then the torsion tensor field \tilde{T} of $\tilde{\nabla}$ is given by

$$
\tilde{T}(X, Y)=2 \sum_{\alpha=1}^{3} d \eta_{\alpha}(X, Y) \xi_{\alpha}, \quad \tilde{T}\left(X, \xi_{\alpha}\right)=0, \quad \tilde{T}\left(\xi_{\alpha}, \xi_{\beta}\right)=\left[\xi_{\beta}, \xi_{\alpha}\right]
$$

for all $X, Y \in \Gamma(\mathcal{H})$ and for all $\alpha \in\{1,2,3\}$.
Proof. For any horizontal vector fields X, Y we have

$$
\begin{aligned}
\tilde{T}(X, Y) & =\left(\nabla_{X} Y-\nabla_{Y} X-[X, Y]\right)^{h}-[X, Y]^{v} \\
& =(T(X, Y))^{h}-\sum_{\alpha=1}^{3} g\left([X, Y], \xi_{\alpha}\right) \xi_{\alpha} \\
& =2 \sum_{\alpha=1}^{3} d \eta_{\alpha}(X, Y) \xi_{\alpha} .
\end{aligned}
$$

Moreover, it follows from (7) that $\tilde{T}\left(\xi_{\alpha}, X\right)=\left[\xi_{\alpha}, X\right]-\left[\xi_{\alpha}, X\right]=0$. Finally, for all $\alpha, \beta \in\{1,2,3\}$, we have easily $\tilde{T}\left(\xi_{\alpha}, \xi_{\beta}\right)=-\left[\xi_{\alpha}, \xi_{\beta}\right]=\left[\xi_{\beta}, \xi_{\alpha}\right]$.

Corollary 3.5. Let $\left(M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g\right)$ be an almost 3 -contact metric manifold such that the 1 -forms $\eta_{1}, \eta_{2}, \eta_{3}$ are $\tilde{\nabla}$ parallel. Then, the distribution spanned by ξ_{1}, ξ_{2} and ξ_{3} is integrable if and only if $\tilde{T}(E, F)=2 \sum_{\alpha=1}^{3} d \eta_{\alpha}(E, F) \xi_{\alpha}$ for all $E, F \in \Gamma(T M)$.
Proof. From the equality $\left[\xi_{\beta}, \xi_{\alpha}\right]^{v}=\sum_{\gamma=1}^{3} \eta_{\gamma}\left(\left[\xi_{\beta}, \xi_{\alpha}\right]\right) \xi_{\gamma}$ it follows that if the distribution spanned by ξ_{1}, ξ_{2} and ξ_{3} is integrable, then $\tilde{T}\left(\xi_{\alpha}, \xi_{\beta}\right)=\sum_{\gamma=1}^{3} \eta_{\gamma}\left(\left[\xi_{\beta}, \xi_{\alpha}\right]\right) \xi_{\gamma}=2 \sum_{\gamma=1}^{3} d \eta_{\gamma}\left(\xi_{\alpha}, \xi_{\beta}\right) \xi_{\gamma}$. The converse is trivial.

Actually, the requirement that the Reeb vector fields are parallel, together with Propositions 3.3 and 3.4 uniquely characterise the connection $\tilde{\nabla}$. This is shown in the following theorem.

Theorem 3.6. Let $\left(M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g\right)$ be an almost 3 -contact metric manifold. Then there exists a unique connection $\tilde{\nabla}$ on M satisfying the following properties:
(i) $\tilde{\nabla} \xi_{1}=\tilde{\nabla} \xi_{2}=\tilde{\nabla} \xi_{3}=0$,
(ii) $\left(\tilde{\nabla}_{Z} g\right)(X, Y)=0$, for all $X, Y, Z \in \Gamma(\mathcal{H})$,
(iii) $\tilde{T}(X, Y)=2 \sum_{\alpha=1}^{3} d \eta_{\alpha}(X, Y) \xi_{\alpha}$ and $\tilde{T}\left(X, \xi_{\alpha}\right)=0$, for all $X, Y \in \Gamma(\mathcal{H})$.

Furthermore, if M is 3 -Sasakian, then for all $E, F \in \Gamma(T M)$

$$
\begin{equation*}
\left(\tilde{\nabla}_{E} \phi_{\alpha}\right) F=-\sum_{\beta, \gamma=1}^{3} \epsilon_{\alpha \beta \gamma}\left(\eta_{\beta}(E) \phi_{\gamma} F^{h}-\eta_{\gamma}(E) \phi_{\beta} F^{h}\right) ; \tag{8}
\end{equation*}
$$

if M is 3-cosymplectic, then the connection $\tilde{\nabla}$ coincides with the Levi-Civita connection and in particular we have, for each $\alpha \in\{1,2,3\}, \tilde{\nabla} \phi_{\alpha}=0$.

Proof. The connection defined by (7) satisfies the properties (i)-(iii). Thus we have only to prove the uniqueness of such a connection. Let $\hat{\nabla}$ be any connection on M verifying the properties (i)-(iii). From (i) we get $\hat{\nabla} \xi_{\alpha}=0=\tilde{\nabla} \xi_{\alpha}$, and, from (iii), $0=\hat{T}\left(\xi_{\alpha}, X\right)=\hat{\nabla}_{\xi_{\alpha}} X-\hat{\nabla}_{X} \xi_{\alpha}-\left[\xi_{\alpha}, X\right]=\hat{\nabla}_{\xi_{\alpha}} X-\left[\xi_{\alpha}, X\right]$, which implies that $\hat{\nabla}_{\xi_{\alpha}} X=\left[\xi_{\alpha}, X\right]=$ $\tilde{\nabla}_{\xi_{\alpha}} X$ for all $X \in \Gamma(\mathcal{H})$. Thus we have only to verify that $\hat{\nabla}_{X} Y=\tilde{\nabla}_{X} Y$ for all $X, Y \in \Gamma(\mathcal{H})$, that is $\hat{\nabla}_{X} Y=\left(\nabla_{X} Y\right)^{h}$ for all $X, Y \in \Gamma(\mathcal{H})$. In order to check this equality, we define another connection on M, by setting

$$
\bar{\nabla}_{E} F:= \begin{cases}\hat{\nabla}_{E} F+\left(\nabla_{E} F\right)^{v}, & \text { for } E, F \in \Gamma(\mathcal{H}) ; \\ \nabla_{E} F, & \text { for } E \in \Gamma\left(\mathcal{H}^{\perp}\right) \text { and } F \in \Gamma(T M) ; \\ \nabla_{E} F, & \text { for } E \in \Gamma(T M) \text { and } F \in \Gamma\left(\mathcal{H}^{\perp}\right),\end{cases}
$$

where $\left(\nabla_{E} F\right)^{v}$ denotes the vertical component of the Levi-Civita covariant derivative. If we prove that $\bar{\nabla}$ coincides with the Levi-Civita connection, then we will conclude that for all $X, Y \in \Gamma(\mathcal{H}) \nabla_{X} Y=\bar{\nabla}_{X} Y=\hat{\nabla}_{X} Y+\left(\nabla_{X} Y\right)^{v}$, from which $\hat{\nabla}_{X} Y=\left(\nabla_{X} Y\right)^{h}$. Firstly, note that for all $X, Y \in \Gamma(\mathcal{H})$, using the definition of the Levi-Civita connection ∇ we have

$$
\begin{aligned}
\bar{\nabla}_{X} Y & =\hat{\nabla}_{X} Y+\sum_{\alpha=1}^{3} g\left(\nabla_{X} Y, \xi_{\alpha}\right) \xi_{\alpha} \\
& =\hat{\nabla}_{X} Y-\frac{1}{2} \sum_{\alpha=1}^{3}\left(\xi_{\alpha}(g(X, Y))-g\left(\left[\xi_{\alpha}, X\right], Y\right)-g\left(\left[\xi_{\alpha}, Y\right], X\right)-g\left([X, Y], \xi_{\alpha}\right)\right) \xi_{\alpha} \\
& =\hat{\nabla}_{X} Y+\frac{1}{2} \sum_{\alpha=1}^{3}\left(-\left(\mathcal{L}_{\xi_{\alpha}} g\right)(X, Y)+\eta_{\alpha}([X, Y])\right) \xi_{\alpha} \\
& =\hat{\nabla}_{X} Y-\sum_{\alpha=1}^{3}\left(\frac{1}{2}\left(\mathcal{L}_{\xi_{\alpha}} g\right)(X, Y)+d \eta_{\alpha}(X, Y)\right) \xi_{\alpha}
\end{aligned}
$$

Now we prove that the connection $\bar{\nabla}$ is metric and torsion free. For all $X, Y, Y^{\prime} \in \Gamma(\mathcal{H})$

$$
\left(\bar{\nabla}_{X} g\right)\left(Y, Y^{\prime}\right)=X\left(g\left(Y, Y^{\prime}\right)\right)-g\left(\hat{\nabla}_{X} Y, Y^{\prime}\right)-g\left(Y, \hat{\nabla}_{X} Y^{\prime}\right)=\left(\hat{\nabla}_{X} g\right)\left(Y, Y^{\prime}\right)=0
$$

by the preceding equality and the condition (ii). Next, by using (iii), we obtain $\bar{T}(X, Y)=\hat{T}(X, Y)-$ $2 \sum_{\alpha=1}^{3} d \eta_{\alpha}(X, Y) \xi_{\alpha}=0$. Thus $\bar{\nabla}$ coincides with the Levi-Civita connection of M and this implies that $\hat{\nabla}=\tilde{\nabla}$.

Now we prove the second part of the theorem. Assume that M is 3-Sasakian. Then for any $X, Y \in \Gamma(\mathcal{H})$, using (3) and the fact that $\nabla g=0$ we have

$$
\begin{aligned}
\left(\tilde{\nabla}_{X} \phi_{1}\right) Y & =\left(\nabla_{X} \phi_{1}\right) Y-\sum_{\alpha=1}^{3} g\left(\nabla_{X}\left(\phi_{1} Y\right), \xi_{\alpha}\right) \xi_{\alpha}+\phi_{1}\left(\sum_{\alpha=1}^{3} g\left(\nabla_{X} Y, \xi_{\alpha}\right) \xi_{\alpha}\right) \\
& =g(X, Y) \xi_{1}-\eta_{1}(Y) X+\sum_{\alpha=1}^{3} g\left(\phi_{1} Y, \nabla_{X} \xi_{\alpha}\right) \xi_{\alpha}+g\left(\nabla_{X} Y, \xi_{2}\right) \xi_{3}-g\left(\nabla_{X} Y, \xi_{3}\right) \xi_{2} \\
& =-g\left(\phi_{1} Y, \phi_{2} X\right) \xi_{2}-g\left(\phi_{1} Y, \phi_{3} X\right) \xi_{3}+g\left(Y, \phi_{2} X\right) \xi_{3}-g\left(Y, \phi_{3} X\right) \xi_{2} \\
& =g\left(Y, \phi_{1} \phi_{2} X\right) \xi_{2}+g\left(Y, \phi_{1} \phi_{3} X\right) \xi_{3}+g\left(Y, \phi_{2} X\right) \xi_{3}-g\left(Y, \phi_{3} X\right) \xi_{2}=0 .
\end{aligned}
$$

Moreover, for any $\alpha, \beta, \gamma \in\{1,2,3\},\left(\tilde{\nabla}_{E} \phi_{\beta}\right) \xi_{\gamma}=\tilde{\nabla}_{E}\left(\phi_{\beta} \xi_{\gamma}\right)-\phi_{\beta} \tilde{\nabla}_{E} \xi_{\gamma}=\sum_{\alpha=1}^{3} \epsilon_{\alpha \beta \gamma} \tilde{\nabla}_{E} \xi_{\alpha}=0$. Finally, for any $X \in \Gamma(\mathcal{H})$

$$
\left(\tilde{\nabla}_{\xi_{1}} \phi_{1}\right) X=\tilde{\nabla}_{\xi_{1}}\left(\phi_{1} X\right)-\phi_{1} \tilde{\nabla}_{\xi_{1}} X=\left[\xi_{1}, \phi_{1} X\right]-\phi_{1}\left[\xi_{1}, X\right]=\left(\mathcal{L}_{\xi_{1}} \phi_{1}\right) X,
$$

so $\left(\tilde{\nabla}_{\xi_{1}} \phi_{1}\right) X=\left(\mathcal{L}_{\xi_{1}} \phi_{1}\right) X$. Similarly, one can find $\left(\tilde{\nabla}_{\xi_{2}} \phi_{1}\right) X=\left(\mathcal{L}_{\xi_{2}} \phi_{1}\right) X$ and $\left(\tilde{\nabla}_{\xi_{3}} \phi_{1}\right) X=\left(\mathcal{L}_{\xi_{3}} \phi_{1}\right) X$. Hence, by applying (5), we have $\left(\tilde{\nabla}_{\xi_{1}} \phi_{1}\right) X=0,\left(\tilde{\nabla}_{\xi_{2}} \phi_{1}\right) X \stackrel{ }{=}-2 \phi_{3} X,\left(\tilde{\nabla}_{\xi_{3}} \phi_{1}\right) X=2 \phi_{2} X$. Thus, if we decompose any pair of vector fields $E, F \in \Gamma(T M)$ in their horizontal and vertical parts, $E=E^{h}+\sum_{\alpha=1}^{3} \eta_{\alpha}(E) \xi_{\alpha}$ and $F=F^{h}+\sum_{\alpha=1}^{3} \eta_{\alpha}(F) \xi_{\alpha}$, we have

$$
\begin{aligned}
\left(\tilde{\nabla}_{E} \phi_{1}\right) F & =\sum_{\alpha=1}^{3}\left(\tilde{\nabla}_{\eta_{\alpha}(E) \xi_{\alpha}} \phi_{1}\right) F^{h} \\
& =\eta_{2}(E)\left(\tilde{\nabla}_{\xi_{2}} \phi_{1}\right) F^{h}+\eta_{3}(E)\left(\tilde{\nabla}_{\xi_{3}} \phi_{1}\right) F^{h} \\
& =-2 \eta_{2}(E) \phi_{3} F^{h}+2 \eta_{3}(E) \phi_{2} F^{h} .
\end{aligned}
$$

The other equations involving ϕ_{2} and ϕ_{3} can be proved in a similar way.
Finally, let M be 3-cosymplectic. Then $\nabla_{X} Y$ is horizontal for every $X, Y \in \Gamma(\mathcal{H})$, since $g\left(\nabla_{X} Y, \xi_{\alpha}\right)=$ $-g\left(Y, \nabla_{X} \xi_{\alpha}\right)=0$ for all $\alpha \in\{1,2,3\}$. Hence, $\nabla_{X} Y=\left(\nabla_{X} Y\right)^{h} \underset{\tilde{\nabla}}{\tilde{\nabla}} \tilde{\nabla}_{X} Y$. Moreover, $\nabla \xi_{\alpha}=0=\tilde{\nabla} \xi_{\alpha}$. Finally, $\nabla_{\xi_{\alpha}} X=\nabla_{X} \xi_{\alpha}-\left[X, \xi_{\alpha}\right]=\left[\xi_{\alpha}, X\right]=\tilde{\nabla}_{\xi_{\alpha}} X$. We conclude that $\nabla=\tilde{\nabla}$.

In the next proposition we analyse the curvature of the canonical connection $\tilde{\nabla}$ in a 3-Sasakian manifold.

Proposition 3.7. Let $\left(M^{4 n+3}, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g\right)$ be a 3-Sasakian manifold. Then the curvature tensor of $\tilde{\nabla}$ verifies $\tilde{R}_{E F} \xi_{\alpha}=0, \tilde{R}_{\xi_{\alpha} \xi_{\beta}}=0$ and $\tilde{R}_{X \xi_{\alpha}}=0$ for all $E, F \in \Gamma(T M), X \in \Gamma(\mathcal{H})$ and $\alpha, \beta \in\{1,2,3\}$. Moreover, for all $X, Y, Z \in \Gamma(\mathcal{H})$,

$$
\begin{equation*}
\tilde{R}_{X Y} Z=\left(R_{X Y} Z\right)^{h}+\sum_{\alpha=1}^{3}\left(d \eta_{\alpha}(Y, Z) \phi_{\alpha} X-d \eta_{\alpha}(X, Z) \phi_{\alpha} Y\right) . \tag{9}
\end{equation*}
$$

Proof. That $\tilde{R}_{E F} \xi_{\alpha}=0$ is obvious since $\tilde{\nabla} \xi_{\alpha}=0$. Next, for any $\alpha, \beta \in\{1,2,3\}$,

$$
\begin{aligned}
\tilde{R}_{\xi_{\alpha} \xi_{\beta}} E & =\tilde{\nabla}_{\xi_{\alpha}}\left[\xi_{\beta}, E\right]-\tilde{\nabla}_{\xi_{\beta}}\left[\xi_{\alpha}, E\right]-\tilde{\nabla}_{2} \sum_{\gamma=1}^{3} \epsilon_{\alpha \beta \gamma} \xi_{\gamma} \\
& =\left[\xi_{\alpha},\left[\xi_{\beta}, E\right]\right]-\left[\xi_{\beta},\left[\xi_{\alpha}, E\right]\right]-2 \sum_{\gamma=1}^{3} \epsilon_{\alpha \beta \gamma}\left[\xi_{\gamma}, E\right] \\
& =\left[\left[\xi_{\alpha}, E\right], \xi_{\beta}\right]+\left[\left[E, \xi_{\beta}\right], \xi_{\alpha}\right]+\left[\left[\xi_{\beta}, \xi_{\alpha}\right], E\right]=0
\end{aligned}
$$

by the Jacobi identity. Moreover, since the distribution $\left\langle\xi_{1}, \xi_{2}, \xi_{3}\right\rangle$ is integrable and each ξ_{α} is Killing, this distribution defines a Riemannian foliation of $M^{4 n+3}$, which can be described, at least locally, by a family of Riemannian submersions. Note that $\tilde{\nabla}$ can be interpreted as the lift of the Levi-Civita connection of the space of leaves. If X, Y are (local) basic vector fields with respect to such a given submersion, then

$$
\tilde{R}_{X \xi_{\alpha}} Y=\tilde{\nabla}_{X} \tilde{\nabla}_{\xi_{\alpha}} Y-\tilde{\nabla}_{\xi_{\alpha}} \tilde{\nabla}_{X} Y-\tilde{\nabla}_{\left[X, \xi_{\alpha}\right]} Y=\tilde{\nabla}_{X}\left[\xi_{\alpha}, Y\right]-\left[\xi_{\alpha}, \tilde{\nabla}_{X} Y\right]-\tilde{\nabla}_{\left[X, \xi_{\alpha}\right]} Y=0,
$$

since $\left[\xi_{\alpha}, Y\right]=\left[\xi_{\alpha}, \tilde{\nabla}_{X} Y\right]=\left[X, \xi_{\alpha}\right]=0$ because, as X, Y and $\tilde{\nabla}_{X} Y$ are basic, these brackets are vertical and, by Lemma 3.2, also horizontal, hence they vanish. It remains to prove (9). We have

$$
\begin{aligned}
\tilde{R}_{X Y} Z= & \left(\nabla_{X} \tilde{\nabla}_{Y} Z\right)^{h}-\left(\nabla_{Y} \tilde{\nabla}_{X} Z\right)^{h}-\tilde{\nabla}_{[X, Y]^{h}} Z-\tilde{\nabla}_{\sum_{\alpha=1}^{3} \eta_{\alpha}([X, Y]) \xi_{\alpha}} Z \\
= & \left(\nabla_{X}\left(\nabla_{Y} Z-\sum_{\alpha=1}^{3} \eta_{\alpha}\left(\nabla_{Y} Z\right) \xi_{\alpha}\right)\right)^{h}-\left(\nabla_{Y}\left(\nabla_{X} Z-\sum_{\alpha=1}^{3} \eta_{\alpha}\left(\nabla_{X} Z\right) \xi_{\alpha}\right)\right)^{h} \\
& -\left(\nabla_{[X, Y]^{h}} Z\right)^{h}-\sum_{\alpha=1}^{3} \eta_{\alpha}([X, Y])\left[\xi_{\alpha}, Z\right] \\
= & \left(R_{X Y} Z\right)^{h}+\sum_{\alpha=1}^{3}\left(\eta_{\alpha}\left(\nabla_{Y} Z\right) \phi_{\alpha} X-\eta_{\alpha}\left(\nabla_{X} Z\right) \phi_{\alpha} Y\right)
\end{aligned}
$$

from which (9) follows.
We will now show that the Ricci curvature of every 3-cosymplectic manifold vanishes. This result is a consequence of the projectability of 3 -cosymplectic manifolds onto hyper-Kählerian manifolds which is stated in the following theorem.

Theorem 3.8. Every regular 3-cosymplectic structure projects onto a hyper-Kählerian structure.
Proof. Since the foliation \mathcal{F}_{3} is regular, it is defined by a global submersion f from $M^{4 n+3}$ to the space of leaves $M^{\prime 4 n}=M^{4 n+3} / \mathcal{F}_{3}$. Then the Riemannian metric g projects to a Riemannian metric G on $M^{\prime 4 n}$ because each ξ_{α} is Killing. Moreover, by (6), the tensor fields $\phi_{1}, \phi_{2}, \phi_{3}$ project to three tensor fields J_{1}, J_{2}, J_{3} on $M^{\prime 4 n}$ and it is easy to check that $J_{\alpha} J_{\beta}=\sum_{\gamma=1}^{3} \epsilon_{\alpha \beta \gamma} J_{\gamma}-\delta_{\alpha \beta} I$. In fact $\left(J_{\alpha}, G\right)$ are Hermitian structures which are integrable because $N_{\alpha}=0$.

Remark 3.9. Without the assumption of the regularity, Theorem 3.8 still holds, but locally, in the sense that there exists a family of submersions f_{i} from open subsets U_{i} of $M^{4 n+3}$ to a $4 n$-dimensional manifold $M^{\prime 4 n}$, with $\left\{U_{i}\right\}_{i \in I}$ an open covering of $M^{4 n+3}$, such that the 3-cosymplectic structure ($\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g$) projects under f_{i} to a hyper-Kählerian structure on $M^{\prime 4 n}$.

Corollary 3.10. Every 3-cosymplectic manifold is Ricci-flat.

Proof. According to Remark 3.9, let f_{i} be a local submersion from the 3-cosymplectic manifold $M^{4 n+3}$ to the hyperKählerian manifold $M^{\prime 4 n}$. Since f_{i} is a Riemannian submersion, we can apply a well-known formula which relates the Ricci tensors and, $M^{4 n+3}$ and $M^{\prime 4 n}$ (cf. [7]): for any X, Y basic vector fields

$$
\begin{equation*}
\operatorname{Ric}(X, Y)=\operatorname{Ric}^{\prime}\left(f_{i_{*}} X, f_{i_{*}} Y\right)+\frac{1}{2}\left(g\left(\nabla_{X} N, Y\right)+g\left(\nabla_{Y} N, X\right)\right)-2 \sum_{i=1}^{n} g\left(A_{X} X_{i}, A_{Y} X_{i}\right)-\sum_{\alpha=1}^{3} g\left(T_{\xi_{\alpha}} X, T_{\xi_{\beta}} Y\right), \tag{10}
\end{equation*}
$$

where $\left\{X_{1}, \ldots, X_{4 n}, \xi_{1}, \xi_{2}, \xi_{3}\right\}$ is a local orthonormal basis with each X_{i} basic, A and T are the O'Neill tensors associated with f_{i}, and N is the local vector field on $M^{4 n+3}$ given by $N=\sum_{\alpha=1}^{3} T_{\xi_{\alpha}} \xi_{\alpha}$. Note that, since the horizontal distribution is integrable, $A \equiv 0$, and by $\nabla \xi_{\alpha}=0$ we get $T_{\xi_{\alpha}} \xi_{\alpha}=\left(\nabla_{\xi_{\alpha}} \xi_{\alpha}\right)^{h} \stackrel{=}{=}, T_{\xi_{\alpha}} Z=\left(\nabla_{\xi_{\alpha}} Z\right)^{v}=$ $\left(\nabla_{Z} \xi_{\alpha}+\left[\xi_{\alpha}, Z\right]\right)^{v}=0$. Hence the formula (10) reduces to

$$
\operatorname{Ric}(X, Y)=\operatorname{Ric}^{\prime}\left(f_{i_{*}} X, f_{i_{*}} Y\right)
$$

But $\operatorname{Ric}^{\prime}\left(X^{\prime}, Y^{\prime}\right)=0$ for all $X^{\prime}, Y^{\prime} \in \Gamma(T M)$, because $M^{\prime 4 n}$ is hyper-Kählerian. Hence Ric $=0$ in the horizontal subbundle \mathcal{H}. Finally, it is easy to check that $\operatorname{Ric}\left(\xi_{\alpha}, \xi_{\beta}\right)=0$ and $\operatorname{Ric}\left(X, \xi_{\beta}\right)=0$ for any $X \in \Gamma(\mathcal{H})$.

4. The Darboux theorem

Let $M^{4 n+3}$ be a manifold endowed with an almost contact metric 3 -structure ($\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g$). We denote by $\Phi_{\alpha}^{\mathrm{b}}: X \mapsto \Phi_{\alpha}(X, \cdot)$ the musical isomorphisms induced by the fundamental 2-forms Φ_{α} between horizontal vector fields and vertical 1-forms. Their inverses will be denoted by Φ_{α}^{\sharp}. We also denote by $g_{\mathcal{H}}^{b}$ the musical isomorphism induced by the metric between horizontal vector fields and vertical 1-forms, and by $\phi_{\alpha}^{\mathcal{H}}: \mathcal{H} \rightarrow \mathcal{H}$ the isomorphisms induced by the endomorphisms $\phi_{\alpha}: T M \rightarrow T M$.

Lemma 4.1. In any almost 3-contact metric manifold, the following formulas hold, for each $\alpha \in\{1,2,3\}$,

$$
\begin{equation*}
g_{\mathcal{H}}^{b}=\Phi_{\alpha}^{b} \circ \phi_{\alpha}^{\mathcal{H}}, \quad \phi_{\alpha}^{\mathcal{H}}=-\frac{1}{2} \sum_{\beta, \gamma=1}^{3} \epsilon_{\alpha \beta \gamma} \Phi_{\beta}^{\sharp} \circ \Phi_{\gamma}^{b} . \tag{11}
\end{equation*}
$$

Proof. From $\Phi_{\alpha}(X, Y)=g\left(X, \phi_{\alpha} Y\right)$ we have $-\Phi_{\alpha}^{b}=g_{\mathcal{H}}^{b} \circ \phi_{\alpha}^{\mathcal{H}}$. It follows that

$$
\begin{equation*}
g_{\mathcal{H}}^{b}=\Phi_{\alpha}^{b} \circ \phi_{\alpha}^{\mathcal{H}}, \tag{12}
\end{equation*}
$$

since $\phi_{\alpha}^{2} X=-X+\eta_{\alpha}(X) \xi_{\alpha}=-X$ for every $X \in \Gamma(\mathcal{H})$. We now prove the second formula of (11). Since the equation (12) holds for each $\alpha \in\{1,2,3\}$, we get

$$
\begin{equation*}
\phi_{\beta}^{\mathcal{H}} \circ \phi_{\gamma}^{\mathcal{H}}=-\Phi_{\beta}^{\sharp} \circ \Phi_{\gamma}^{b}, \tag{13}
\end{equation*}
$$

for each $\beta, \gamma \in\{1,2,3\}$. Moreover, in view of (2), we have $\phi_{\beta}^{\mathcal{H}} \circ \phi_{\gamma}^{\mathcal{H}}=\sum_{\alpha=1}^{3} \epsilon_{\alpha \beta \gamma} \phi_{\alpha}^{\mathcal{H}}$. Thus we obtain $\sum_{\alpha=1}^{3} \epsilon_{\alpha \beta \gamma} \phi_{\alpha}^{\mathcal{H}}=-\Phi_{\beta}^{\sharp} \circ \Phi_{\gamma}^{b}$, that is $2 \phi_{\alpha}^{\mathcal{H}}=-\sum_{\beta, \gamma=1}^{3} \epsilon_{\alpha \beta \gamma} \Phi_{\beta}^{\sharp} \circ \Phi_{\gamma}^{b}$.

Corollary 4.2. In any almost 3 -contact metric manifold, the following formula holds in the horizontal subbundle \mathcal{H},

$$
g_{\mathcal{H}}^{b}=-\Phi_{1}^{b} \circ \Phi_{2}^{\sharp} \circ \Phi_{3}^{b} .
$$

Proof. From the two equalities in (11) we obtain

$$
g_{\mathcal{H}}^{b}=-\frac{1}{2} \Phi_{1}^{b} \circ\left(\Phi_{2}^{\sharp} \circ \Phi_{3}^{b}-\Phi_{3}^{\sharp} \circ \Phi_{2}^{\mathrm{b}}\right) .
$$

On the other hand, from (13) and (2) we obtain $\Phi_{2}^{b} \circ \phi_{3}^{\mathcal{H}}=-\Phi_{3}^{\mathrm{b}} \circ \phi_{2}^{\mathcal{H}}$. The claim follows.

Now we prove that a 3-Sasakian manifold cannot admit any Darboux-like coordinate system. Here for "Darbouxlike coordinate system" we mean local coordinates $\left\{x_{1}, \ldots, x_{4 n}, z_{1}, z_{2}, z_{3}\right\}$ with respect to which, for each $\alpha \in$ $\{1,2,3\}$, the fundamental 2 -forms $\Phi_{\alpha}=d \eta_{\alpha}$ have constant components and $\xi_{\alpha}=a_{\alpha}^{1} \frac{\partial}{\partial z_{1}}+a_{\alpha}^{2} \frac{\partial}{\partial z_{2}}+a_{\alpha}^{3} \frac{\partial}{\partial z_{3}}, a_{\alpha}^{\beta}$ being functions depending only on the coordinates z_{1}, z_{2}, z_{3}. This is a natural generalisation of the standard Darboux coordinates for contact manifolds.

Theorem 4.3. Let $\left(M^{4 n+3}, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g\right)$ be a 3-Sasakian manifold. Then $M^{4 n+3}$ does not admit any Darboux-like coordinate system.
Proof. Let p be a point of $M^{4 n+3}$. Then in view of Theorem 2.1 there exist an open neighbourhood U of p and a (local) Riemannian submersion f with connected fibres from U onto a quaternionic Kählerian manifold $M^{\prime 4 n}$, such that $\operatorname{ker}\left(f_{*}\right)=\left\langle\xi_{1}, \xi_{2}, \xi_{3}\right\rangle$. Note that the horizontal vectors with respect to f are just the vectors belonging to \mathcal{H}, i.e. those orthogonal to $\xi_{1}, \xi_{2}, \xi_{3}$. Now, suppose by contradiction that about the point p there exists a Darboux coordinate system, that is an open neighbourhood V with local coordinates $\left\{x_{1}, \ldots, x_{4 n}, z_{1}, z_{2}, z_{3}\right\}$ as above. We can assume that $U=V$. We decompose each vector field $\frac{\partial}{\partial x_{i}}$ into its horizontal and vertical components, $\frac{\partial}{\partial x_{i}}=X_{i}+\sum_{\alpha=1}^{3} \eta_{\alpha}\left(\frac{\partial}{\partial x_{i}}\right) \xi_{\alpha}$. Note that

$$
\begin{align*}
\eta_{\alpha}\left(\frac{\partial}{\partial x_{i}}\right) & =\frac{1}{2} \sum_{\beta, \gamma=1}^{3} \epsilon_{\alpha \beta \gamma} g\left(\frac{\partial}{\partial x_{i}}, \phi_{\beta} \xi_{\gamma}\right)=\frac{1}{2} \sum_{\beta, \gamma=1}^{3} \epsilon_{\alpha \beta \gamma} d \eta_{\beta}\left(\frac{\partial}{\partial x_{i}}, \xi_{\gamma}\right) \\
& =\frac{1}{2} \sum_{\beta, \gamma, \delta=1}^{3} \epsilon_{\alpha \beta \gamma} a_{\gamma}^{\delta} d \eta_{\beta}\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial z_{\delta}}\right), \tag{14}
\end{align*}
$$

so that $\eta_{\alpha}\left(\frac{\partial}{\partial x_{i}}\right)$ are functions which do not depend on the coordinates x_{i}. Consequently, the only eventually non-constant components of each horizontal vector field $X_{i}=\frac{\partial}{\partial x_{i}}-\sum_{\alpha=1}^{3} \eta_{\alpha}\left(\frac{\partial}{\partial x_{i}}\right) \xi_{\alpha}$ in the holonomic basis $\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n},}, \frac{\partial}{\partial z_{1}}, \frac{\partial}{\partial z_{2}}, \frac{\partial}{\partial z_{3}}\right)$ depend at most on the coordinates z_{1}, z_{2}, z_{3}. Actually, for each $i \in\{1, \ldots, 4 n\}, X_{i}$ is a basic vector field with respect to the submersion f, thus its components do not depend even on the fibre coordinates z_{α}, hence they are constant. For proving this it is sufficient to show that, for each $\alpha \in\{1,2,3\},\left[X_{i}, \xi_{\alpha}\right]$ is vertical. Indeed,

$$
\left[X_{i}, \xi_{\alpha}\right]=\sum_{\beta=1}^{3} \frac{\partial a_{\alpha}^{\beta}}{\partial x_{i}} \frac{\partial}{\partial z_{\beta}}+\sum_{\beta=1}^{3}\left[\eta_{\beta}\left(\frac{\partial}{\partial x_{i}}\right) \xi_{\beta}, \xi_{\alpha}\right]=\sum_{\beta=1}^{3}\left[\eta_{\beta}\left(\frac{\partial}{\partial x_{i}}\right) \xi_{\beta}, \xi_{\alpha}\right]
$$

because the functions a_{α}^{β} do not depend on the coordinates x_{i}. Then by Corollary 4.2

$$
\begin{equation*}
g\left(X_{i}, X_{j}\right)=-\left(d \eta_{1}^{b} \circ d \eta_{2}^{\sharp} \circ d \eta_{3}^{b}\right)\left(X_{i}\right)\left(X_{j}\right) \tag{15}
\end{equation*}
$$

and so the functions $g\left(X_{i}, X_{j}\right)$ are constant since each X_{i} has constant components and the 2 -forms $d \eta_{\alpha}$ are assumed to have constant components, too. The next step is to note that, for all $i, j \in\{1, \ldots, 4 n\}$, the brackets $\left[X_{i}, X_{j}\right]$ are vertical vector fields. We have, by (14),

$$
\begin{aligned}
{\left[X_{i}, X_{j}\right]=} & {\left[\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right]+\sum_{\alpha, \beta=1}^{3}\left[\eta_{\alpha}\left(\frac{\partial}{\partial x_{i}}\right) \xi_{\alpha}, \eta_{\beta}\left(\frac{\partial}{\partial x_{j}}\right) \xi_{\beta}\right] } \\
& -\sum_{\alpha=1}^{3}\left[\eta_{\alpha}\left(\frac{\partial}{\partial x_{i}}\right) \xi_{\alpha}, \frac{\partial}{\partial x_{j}}\right]-\sum_{\beta=1}^{3}\left[\frac{\partial}{\partial x_{i}}, \eta_{\beta}\left(\frac{\partial}{\partial x_{j}}\right) \xi_{\beta}\right] \\
= & 2 \sum_{\alpha, \beta, \gamma=1}^{3} \eta_{\alpha}\left(\frac{\partial}{\partial x_{i}}\right) \eta_{\beta}\left(\frac{\partial}{\partial x_{j}}\right) \epsilon_{\alpha \beta \gamma} \xi_{\gamma} .
\end{aligned}
$$

Then, for all $i, j, k \in\{1, \ldots, 4 n\}$, using (7) and the Koszul formula for the Levi-Civita covariant derivative we obtain

$$
\begin{aligned}
2 g\left(\tilde{\nabla}_{X_{i}} X_{j}, X_{k}\right)= & 2 g\left(\nabla_{X_{i}} X_{j}, X_{k}\right)=X_{i}\left(g\left(X_{j}, X_{k}\right)\right)+X_{j}\left(g\left(X_{k}, X_{i}\right)\right)-X_{k}\left(g\left(X_{i}, X_{j}\right)\right) \\
& -g\left(\left[X_{j}, X_{k}\right], X_{i}\right)+g\left(\left[X_{k}, X_{i}\right], X_{j}\right)+g\left(\left[X_{i}, X_{j}\right], X_{k}\right)=0,
\end{aligned}
$$

so that $\tilde{\nabla}_{X_{i}} X_{j}=0$. But $\tilde{\nabla}$ projects locally to the Levi-Civita connection ∇^{\prime} of the quaternionic Kählerian manifold $M^{\prime 4 n}$ under the Riemannian submersion f so that in particular we would have that ∇^{\prime} is flat and this cannot happen because the scalar curvature of $M^{\prime 4 n}$, by Theorem 2.1 , must be strictly positive.

Now we prove a Darboux theorem for 3-cosymplectic manifolds.
Theorem 4.4. Around each point of a flat 3-cosymplectic manifold $M^{4 n+3}$ there are local coordinates $\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}, z_{1}, z_{2}, z_{3}\right\}$ such that, for each $\alpha \in\{1,2,3\}, \eta_{\alpha}=d z_{\alpha}, \xi_{\alpha}=\frac{\partial}{\partial z_{\alpha}}$ and, moreover,

$$
\begin{align*}
& \Phi_{1}=2 \sum_{i=1}^{n}\left(d x_{i} \wedge d y_{i}+d u_{i} \wedge d v_{i}\right)-2 d z_{2} \wedge d z_{3} \tag{16}\\
& \Phi_{2}=2 \sum_{i=1}^{n}\left(d x_{i} \wedge d u_{i}-d y_{i} \wedge d v_{i}\right)+2 d z_{1} \wedge d z_{3} \tag{17}\\
& \Phi_{3}=2 \sum_{i=1}^{n}\left(d x_{i} \wedge d v_{i}+d y_{i} \wedge d u_{i}\right)-2 d z_{1} \wedge d z_{2} \tag{18}
\end{align*}
$$

ϕ_{1}, ϕ_{2} and ϕ_{3} are represented, respectively, by the $(4 n+3) \times(4 n+3)$-matrices

$$
\begin{align*}
\phi_{1} & =\left(\begin{array}{ccccccc}
0 & -I_{n} & 0 & 0 & 0 & 0 & 0 \\
I_{n} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -I_{n} & 0 & 0 & 0 \\
0 & 0 & I_{n} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right), \tag{19}\\
\phi_{2} & =\left(\begin{array}{ccccccc}
0 & 0 & -I_{n} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & I_{n} & 0 & 0 & 0 \\
I_{n} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -I_{n} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0
\end{array}\right), \tag{20}\\
\phi_{3} & =\left(\begin{array}{ccccccc}
0 & 0 & 0 & -I_{n} & 0 & 0 & 0 \\
0 & 0 & -I_{n} & 0 & 0 & 0 & 0 \\
0 & I_{n} & 0 & 0 & 0 & 0 & 0 \\
I_{n} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) . \tag{21}
\end{align*}
$$

Proof. Let p be a point of $M^{4 n+3}$. Since $M^{4 n+3}$ is flat there exists a neighbourhood U of p where the curvature tensor field vanishes identically. Moreover, one can prove by some linear algebra that there exist horizontal vectors e_{1}, \ldots, e_{n} such that $\left\{e_{1}, \ldots, e_{n}, \phi_{1} e_{1}, \ldots, \phi_{1} e_{n}, \phi_{2} e_{1}, \ldots, \phi_{2} e_{n}, \phi_{3} e_{1}, \ldots, \phi_{3} e_{n}, \xi_{1_{p}}, \xi_{2}, \xi_{3_{p}}\right\}$ is an orthonormal basis of $T_{p} M$ satisfying the equalities

$$
\begin{array}{llr}
\Phi_{1}\left(e_{i}, \phi_{1} e_{j}\right)=\delta_{i j}, & \Phi_{1}\left(\phi_{2} e_{i}, \phi_{3} e_{j}\right)=\delta_{i j}, & \Phi_{1}\left(\xi_{2_{p}}, \xi_{3_{p}}\right)=-1, \\
\Phi_{2}\left(e_{i}, \phi_{2} e_{j}\right)=\delta_{i j}, & \Phi_{2}\left(\phi_{1} e_{i}, \phi_{3} e_{i}\right)=-\delta_{i j}, & \Phi_{2}\left(\xi_{1_{p}}, \xi_{3_{p}}\right)=1, \\
\Phi_{3}\left(e_{i}, \phi_{3} e_{j}\right)=\delta_{i j}, & \Phi_{3}\left(\phi_{1} e_{i}, \phi_{2} e_{j}\right)=\delta_{i j}, & \Phi_{3}\left(\xi_{1 p}, \xi_{2_{p}}\right)=-1,
\end{array}
$$

and such that the values of the 2 -forms Φ_{α} on all the other pairs of basis vectors vanish. Now we define $4 n$ vector fields $X_{i}, Y_{i}, U_{i}, V_{i}$ on U by parallel transport of the vectors $e_{i}, \phi_{1} e_{i}, \phi_{2} e_{i}, \phi_{3} e_{i}, i \in\{1, \ldots, n\}$. Note that the definition is well-posed because the parallel transport does not depend on the curve. Since the Levi-Civita connection is a metric connection and since $\nabla \xi_{\alpha}=0$ we have that $\left\{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}, U_{1}, \ldots, U_{n}, V_{1}, \ldots, V_{n}, \xi_{1}, \xi_{2}, \xi_{3}\right\}$ is an orthonormal frame on U. Moreover by $\nabla \phi_{\alpha}=0$ we get that

$$
\begin{equation*}
Y_{i}=\phi_{1} X_{i}, \quad U_{i}=\phi_{2} X_{i}, \quad V_{i}=\phi_{3} X_{i} \tag{22}
\end{equation*}
$$

and by $\nabla \Phi_{\alpha}=0$ we have

$$
\begin{array}{llr}
\Phi_{1}\left(X_{i}, Y_{j}\right)=\delta_{i j}, & \Phi_{1}\left(U_{i}, V_{j}\right)=\delta_{i j}, & \Phi_{1}\left(\xi_{2}, \xi_{3}\right)=-1, \\
\Phi_{2}\left(X_{i}, U_{j}\right)=\delta_{i j}, & \Phi_{2}\left(Y_{i}, V_{j}\right)=-\delta_{i j}, & \Phi_{2}\left(\xi_{1}, \xi_{3}\right)=1, \\
\Phi_{3}\left(X_{i}, V_{j}\right)=\delta_{i j}, & \Phi_{3}\left(Y_{i}, U_{j}\right)=\delta_{i j}, & \Phi_{3}\left(\xi_{1}, \xi_{2}\right)=-1, \tag{25}
\end{array}
$$

and the values of the 2 -forms Φ_{α} on all the other pairs of vector fields belonging to the orthonormal frame vanish. Since the vector fields $X_{i}, Y_{i}, U_{i}, V_{i}$ are, by construction, ∇-parallel we have that the bracket of each pair of these vector fields vanishes identically. This, together with (4) and the vanishing of the brackets [$\left.X_{i}, \xi_{\alpha}\right],\left[Y_{i}, \xi_{\alpha}\right],\left[U_{i}, \xi_{\alpha}\right]$ and $\left[V_{i}, \xi_{\alpha}\right]$ implies the existence of local coordinates $\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}, z_{1}, z_{2}, z_{3}\right\}$ with respect to which

$$
\begin{array}{llll}
X_{i}=\frac{\partial}{\partial x_{i}}, & Y_{i}=\frac{\partial}{\partial y_{i}}, & U_{i}=\frac{\partial}{\partial u_{i}}, & V_{i}=\frac{\partial}{\partial v_{i}}, \\
\xi_{1}=\frac{\partial}{\partial z_{1}}, & \xi_{2}=\frac{\partial}{\partial z_{2}}, & \xi_{3}=\frac{\partial}{\partial z_{3}} . &
\end{array}
$$

Now, as the 1 -forms η_{α} are closed, they are locally exact, and we have (eventually reducing U) $\eta_{\alpha}=d f_{\alpha}$ for some functions $f_{\alpha} \in C^{\infty}(U)$, and from the relations $\eta_{\alpha}\left(X_{i}\right)=\eta_{\alpha}\left(Y_{i}\right)=\eta_{\alpha}\left(U_{i}\right)=\eta_{\alpha}\left(V_{i}\right)=0, \eta_{\alpha}\left(\xi_{\beta}\right)=\delta_{\alpha \beta}$ it follows that $\frac{\partial f_{\alpha}}{\partial x_{i}}=\frac{\partial f_{\alpha}}{\partial y_{i}}=\frac{\partial f_{\alpha}}{\partial u_{i}}=\frac{\partial f_{\alpha}}{\partial v_{i}}=0, \frac{\partial f_{\alpha}}{\partial z_{\beta}}=\delta_{\alpha \beta}$. Hence, for each $\alpha \in\{1,2,3\}, \eta_{\alpha}=d z_{\alpha}$. Next, by (23)-(25), we get (16)-(18). Finally, by (22) and by $\phi_{\alpha} \xi_{\beta}=\sum_{\gamma=1}^{3} \epsilon_{\alpha \beta \gamma} \xi_{\gamma}$ we deduce that with respect to this coordinate system ϕ_{1}, ϕ_{2} and ϕ_{3} are represented by the matrices (19)-(21), respectively.

Arguing as in Theorem 4.3 and taking into account that the "vertical" terms $R_{\xi_{\alpha} \xi_{\beta}}$ and the "mixed" terms $R_{X \xi_{\alpha}}$ of the curvature tensor (with $X \in \Gamma(\mathcal{H})$) vanish, one can prove the converse of Theorem 4.4:

Proposition 4.5. Let $\left(M^{4 n+3}, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g\right)$ be a 3-cosymplectic manifold. If each point of $M^{4 n+3}$ admits a Darboux coordinate system such that (16)-(18) of Theorem 4.4 hold, then $M^{4 n+3}$ is flat.

Remark 4.6. We conclude noting that in any almost 3-contact metric manifold ($M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g$) (and in particular in any hyper-contact manifold (cf. [3])) the metric g is uniquely determined by the three fundamental 2-forms Φ_{α} and the three Reeb vector fields ξ_{α}. In particular, in the case of 3-Sasakian manifolds the metric is uniquely determined by the three contact forms η_{α}. Indeed, on the one hand, it follows from Corollary 4.2 that

$$
g(X, Y)=-\left(d \eta_{1}^{b} \circ d \eta_{2}^{\sharp} \circ d \eta_{3}^{b}(X)\right)(Y),
$$

for any $X, Y \in \Gamma(\mathcal{H})$. On the other hand, we have $g\left(\xi_{\alpha}, \xi_{\beta}\right)=\delta_{\alpha \beta}$ and $g\left(X, \xi_{\alpha}\right)=\eta_{\alpha}(X)=0$. This remark gives an answer to the open problem raised by Banyaga in the Remark 11 of [3].

Acknowledgement

The authors wish to thank Prof. A.M. Pastore for the helpful suggestions during the preparation of the paper.

References

[1] B.S. Acharya, J.M. Figueroa-O'Farrill, C.M. Hull, B.J. Spence, Branes at conical singularities and holography, Adv. Theor. Math. Phys. 2 (1999) 1249-1286.
[2] I. Agricola, T. Friedrich, Killing spinors in supergravity with 4-fluxes, Classical Quantum Gravity 20 (2003) 4707-4717.
[3] A. Banyaga, Instantons and hypercontact structures, J. Geom. Phys. 19 (1996) 267-276.
[4] D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Birkhäuser, Boston, 2002.
[5] C.P. Boyer, K. Galicki, B.M. Mann, The geometry and the topology of 3-Sasakian manifolds, J. Reine Angew. Math. 455 (1994) 183-220.
[6] C.P. Boyer, K. Galicki, 3-Sasakian manifolds, in: M. Wang, C. Lebrun (Eds.), Essays on Einstein Manifolds, in: Surveys Diff. Geom., vol. VI, International Press, Cambridge, 1999, pp. 123-184.
[7] M. Falcitelli, S. Ianus, A.M. Pastore, Riemannian Submersions and Related Topics, World Scientific, Singapore, 2004.
[8] G.W. Gibbons, P. Rychenkova, Cones, tri-Sasakian structures and superconformal invariance, Phys. Lett. B 443 (1998) 138-142.
[9] S. Ishihara, Quaternion Kählerian manifolds and fibred Riemannian spaces with Sasakian 3-structure, Kodai Math. Sem. Rep. 25 (1973) 321-329.
[10] D. Janssens, L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981) 1-27.
[11] T. Kashiwada, On a contact 3-structure, Math. Z. 238 (2001) 829-832.
[12] T. Kashiwada, F. Martin Cabrera, M.M. Tripathi, Non-existence of certain 3-structures, Rocky Mountain J. Math. 35 (2005) 1953-1979.
[13] Y.Y. Kuo, On almost 3-structure, Tôhoku Math. J. 22 (1970) 325-332.
[14] F. Martín Cabrera, Almost hyper-Hermitian structures in bundle spaces over manifolds with almost contact 3-structure, Czechoslovak Math. J. 48 (1998) 545-563.
[15] S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. 314 (1) (1989) 349-379.
[16] T. Tshikuna-Matamba, Geometric properties of almost contact metric 3-submersions, Period. Math. Hungar. 52 (2006) $101-119$.
[17] C. Udriste, Structures presque coquaternioniennes, Bull. Math. Soc. Sci. Math. R. S. Roumanie 13 (1969) 487-507.

[^0]: * Corresponding author. Tel.: +39 080 5442693; fax: +39 0805442481.

 E-mail addresses: cappelletti@dm.uniba.it (B. Cappelletti Montano), antondenicola@gmail.com (A. De Nicola).

